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Abstract
This =study i1nvestigated seasanally demanded ~nsumabie
items at the base—-level. This study examined how the Stan-

dard Base Supply System currently addresses seagonally
demanded consumable 1tems and some alternative methods of
addressing consumable seasonal demand items in the SB3S.
The alternative methods analyzed in depth were simple and
Winters' seasonal exponential smoothing, and Box-Jenkins
forecasting models.

This study found that items under study display some

[}

seasonal demand tendencies. The sample consisted of 12 out
of 77 items identified as seasonal by Stock Control person-
nel at Langley AFB, VA. A graphical analysis showed straong-
er seasonal demand tendencies than did the autocorrelaticon
function in which the correlations between demands one year
apart are determined.

.As was expected, the two seascnal models. Winters'
exponential smoothing and Box-Jenkins better predicted
demands for items under study than the 3BS53 model. 0Qf 28
forecasts. Winters' exponential smoothing was best 13 times.
while Box-~Jenkins models were best 9 times.

The autocorrelation function could be used to test
demand data for seasonality and flag items with seascnal

demand patterns for special seasonal treatment, but this is

not currently practical. Any useful effort to test all

»i




items loaded on the SBSS at a base would require demand data
for each item for four or, preferably. more years. - Any
manual attempts to test items for seasonality would be
impractical given the number of items 1in }he average base
supply account.

Among the recommendations given as a result of this
study 1is the suggestion that additional work be done to
facilitate basing demand forecasts on seasonal models where

appropriate.

xii




THE IDENTIFICATION AND
FORECASTING OF SEASONAL DEMAND

CONSUMABLE ITEMS IN BASE SUPPLY

I. Introduction

General Issue

In 1985, Headquarters Tactical Air Command Supply per-
sonnel 1i1dentified to the Air Force Logistics Management
Center the need "to develop an automated method to identify
seasonal items "(1). In the Standard Base Supply System
(SBSS), there is no method to identify consumable items with
seasonal demand patterns (1). This inability to determine
periods of high and low demands leads to excessive inven-—
tories of items during periods of low demand and stockouts
during periods of high demand (1). While a method exists in
the supply system to load special stockage levels for sea-
sonal items. no automated system is available to identify

those items or the appropriate special levels (1).

Specific Problem

At the base-level, managers are forced to use guesswork
and personalized attention to forecast demand and ensure
availability of seasonally demanded items. In this context,.
seasonal items are considered items with demand patterns of

_three or more consecutive months' demand exceeding one




standard deviation from the mean demand. Once an item is
identified as seasonal, managers must also determine the ap-

propriate stockage level for the item.

Research Questions

The following areas were addressed to determine if an
automated system of forecasting range and depth of consum-—
able seasonal demand items (what items to handle as seasonal
and how many of those items to stock) can be developed for
the SBSS:

1. How does the SBSS currently address consumable sea-
sonal demand items?

2. What are alternative methods of addressing consum-
able seasonal demand items in the $SBSS?

3. Do items currently identified as seasonal by person-—
nel at the base-level actually display seasonal tendencies?
4. Can demand for the items currently identified as
seasonal by personnel at the base-level be better forecast

using a model that incorporates seasonal demand pattern
information, or the current 3SBSS model?

5. What method could be used by personnel at the base-—
level to identify items as seasonal and forecast demands for

those items accordingly?

Scope

This research effort concentrates on consumable items

(also known as consumption items)




which are either consumed in use or which lose

their original identity during periods of use by

incorporation into or attachments upon another

assembly. Consumption items are issued on an as
required basis and consist of such supplies as
maintenance parts, raw materiel, office or house-
keeping supplies consumed in use, and other sim-

ilar items. (9:158-159)

Consumable 1tems generally are more economical to replace
than to repair. (Parkas. non-consumable items. are in-
cluded. in this study because they were included in the
sample of seasonal items by the test base.)

Since the SBS5 maintains limited demand data, the re-
search 1s limited to one base which contributes to the Air
Force Logistics Management Center's (AFLMC) database. Ini-
tially three of the twelve contributing bases were selected
according to several criteria: 1) their location in an area
with four distinct seasons, 2) being in different-major
commands. and 3) participating in the AFLMC database. Thc
bases selected as potential candidates were Minot Air Force
Base, ND, of the Strategic Air Command, Dover Air Force
Base, DE, of the Military Airlift Command, and Langley Air
Force Base, VA, of the Tactical Air Command. Because of the
effort involved in extracting data from the AFLMC database

1t was decided to limit the study to only one base, Langley

AFB. VA.

Summary and Overview

This chapter presented the problem of a lack of a sys-
tematic method for identifying seasonal items in the base

supply system. The chapter also described the specific

3




problem, reviewed the research questions, and delineated the
scope of the research. The next chapter will cover the
requirements computation and demand forecasting processes of
the SBSS. 1In addition. a brief overview of several
torecasting methods will be presented. The second chapter
concludes with a survey of previous studies in this area.
Chapter Three continues by detailing the research methodol-
ogy. Chapter Four presents the results and analysis of the
data collected. Finally. Chapter Five gives the conclusions

and recommendations derived from the research.




II. Literature Review

Introduction

The United States Air Force 1s one of the largest buy-
ers of goods and materials in the world. 1In consumable
items alone., over 519,000 different items are stocked in the
AFLC inventory for support of weapons systems (10). With
such large purchasing needs lies the inherent responsibility
to manage assets in an "effective and efficient" manner
(8:2-45).

Once an item is purchased, it is either used or held in
inventory until needed or deemed excess to requirements. As
Ammer notes, inventories act as a hedge against uncertain-
ties in supply and demand (2:257). He also notes that with

too little inventory . . . manufacturing [or pur-

chasing} efficiency and customer relations are

bound to be hurt. Stockouts of essential mate-

rials mean some interruption of production {or

readiness], which raises costs . . . . [In con-

trast., too much inventory will] tie up a company's

capital: they generate storage costs; and deterio-
rate or become obsolete in storage. (2:255-256)

Standard Base Supply 3ystem Requirements Computations

At the base, or retail. level the SBSS is a computer-
ized system designed to monitor inventories of spare parts.
equipment and goods (8:1-5). According to Patterson. Sep-
panen described the SBSS "as a multi-item, single echelon,
continuous review inventory system with stochastic., multiple

unit demands. backordering and an annual budget constraint”

5




(23:1). This means the system manages a multitude of items
at a single (base) level, and has continuous knowledge of
stock levels. The system also assumes demand is stoch-
astic. It permits backorders. and allows demands for multi-
ple units, all subject to a budget constraint. Patterson
also observed that the daily demand rate (DDR) "is the fore-
cast measurement for the SBS5. Unless accurate estimates
are available for the DDR considerable errors may result”
(23:3). Thus, a critical function of the base supply system
is to forecast demands to determine the quantity of each
item to hold at the base-level. The DDR, or estimated
demand, 1s the backbone of the entire SBSS stockage policy.

For years. logisticians. both civilian and military,
have been trying to predict demand based on historical data.
As early as 1962. Solomon noted that demand for Navy air-
craft parts was exceedingly "low and sporadic,"” making
forecasting difficult (28:55). 1In light of this, the SBSS'
method of determining forecasts is discussed, along with how
those forecasts are used. A brief survey of other fore-
casting methods will follow. Finally, a close examination
of two powerful forecasting methods., exponential smoothing
and the Box-Jenkins methodology will ensue.

Demand Forecasting in the 5SB3S. As was mentioned pre-—

viously., demand computations are a critical component in the
calculation of stockage requirements. The DDR 1s used to
determine both the quantity to stock and which items to

stock (23:1). First the calculations involved in

6




determining the quantity to stock will be presented. The
USAF Supply Manual states that consumable item demand levels
“"are based on an economic order policy that balances the
cost to order with cost to hold" (8:19-15). For a given
1item, the demand level 1s calculated from the sum of the
"economic order quantity (EOQ). order and shipping time
(O&3T) quantity. safety level quantity (SLQ). and a 0.999
rounding factor” (8:19-135). The demand levels are updated
quarterly. for stocked i1tems., in order to compensate for any
changes in observed demand (8:19-11).

Daily Demand Rate. Common to the calculation of the

EOQ, O&ST quantity. and SLQ is the daily demand rate (DDR).

The daily demand rate formula 1s:

DDR = cumulative Recurring Demands (1]
Current Date - Date of First Demand (8:19-51)

The actual forecasting technigque is more complex than
first appears from this formula, since both the Date of
First Demand (DOFD) and Cumulative Recurring Demands (CRD)
are updated periodically. The CRD is simply a counter that
records the number of total demands for the i1tem. It is
increased by the number of units ordered for each demand
(23:2). 1In addition, the denominator in (1] 1s replaced
with 180 (six months in days) when less than 180 days of
demand history (current date - DOFD) is available. This
assures that new items are not overstocked (23:2). Two
additional adjustments are made every six months. The CRD

is updated to the current DDR times the lesser of the

7




difference between the current date and DOFD., or 365 (23:2).
Also, the DOFD is adjusted to be the maximum of the DOFD or
the difference between the current date and 365 (23:2). The
net result of these adjustments is that the item's DDR is
based on up to 540 days of demand history, (23:3) and that
the forecasting model becomes "a modified exponential
smoothing [(modell with a changing smoothing parameter”
(23:3). The exponential smoothing model is presented in
greater detail later in this paper.

Economic Order Quantity. The economic order quantity

is a model that replaces stock in batch sized orders to
minimize the sum of carrying cost (the cost to hold an item
in inventory) and the ordering cost. The simple E0OQ model

requires several basic assumptions including (20:638):

1) The demand rate is fixed.

2) Backorders or shortages are not allowed.

3) Delivery occurs just as inventories are depleted.
4) The quantity ordered does not affect carrying and

holding costs.

S) Item cost is fixed.

6) Orders of one item do not affect another item's
ordering or holding costs.

The simple EOQ formula then, is:

4

Q=(2DC,/Cy,) (2]

(20:643)

where Q is the optimal order quantity, D is the annual

demand, C, is the cost to place an order. and C, is the cost

8




to hold one unit of the item in stock for one year. Holding
cost. Ch is usually expressed as a percentage of the cost of
the item (20:643). So. the EOQ is based on four factors:
the cost to order the item, the cost to hold the item in
inventory, the annual demand for the item. and the purchase
price of the i1tem (8:19-15).

Air Force SBSS stockage policy sets the cost to order
at two values depending on the source of the item. For
items centrally procured from the depot supply system the
cost to order is set at $5.20 (8:19-15). For local pur-
chase items it 1s $19.94 because of the added costs of
contractiﬁg to buy the item on the local market (8:19-15).
The cost to hold one unit in stock for one year is set at
15% of the item’'s purchase cost (8:19-15).

This leads toc the actual SBSS EOQ formula. Since the
cost to hold and cost to order are assumed constant for both
purchase cost categories, two formulas are used. one for

centrally procured items and one for local purchase items:

EOQ({Nonlocal Purchase) =

(8.3 *(DDR * 365* Unit Price)% ]/Unit Price {3)
(8:19-52)

EOQ(Local Purchase) = W
{16.3 *(DDR * 365 * Unit Price) ]/Unit Price [4]
(8:19-52)

The EOQ is not used in the strictest sense, however. since
Air Force stockage policy dictates that the E0OQ value must
fall between 30 times the DDR and 365 times the DDR. (8:19—

52). BSo, at times. the exact EOQ quantity may not be




ordered. In addition to the EOQ formula. however, several
other quantities must be computed before determining the
total quantity to stock of an item.

Order and Ship Time Quantity. The first of these other

guantities is the order and ship time gquantity. This is
simply the product of the DDR and the average shipping time
in days between the source of supply and the base (8:19-
53). This value gives the gquantity to stock to compensate
for demands during shipment time from the depot.

Safety Level Quantity. The second quantity is the

safety level., or the amount of stock held to compensate for
variations 1n both lead time demand and order and shipping
times. First the statistical variance of demand (VOD) and
the variance of order and shipping time (VOO) must be calcu-
lated. To understand the following formulas. and their
terms., several ideas must be 1introduced. The VOD is
straightforward: 1t i1s simply a measure of how much lead
time demand may vary over time for the item. The V0O.
however, 1s calculated for all items coming from a given
source of supply. For each receipt of an item from the
source of supply. the time it took to receive the item is
recorded. For example, 1if i1t took an item 12 days to ar-
rive, then the counter for arrivals in 1 to 15 days (a
delivery time segment) for that source of supply would be
increased by one. Then a recalculation according to the

following formulas would occur:

10




VOD = T(Demand?)- (EDemand) 2

n
1 (5]
n, (8:19-53)
VOO = SFI*MIZ - (SFI*MI)2
Nao
= 6]
n, (8:19-53)

where ny 1s the maximum of either the number of days from
the first demand or 180, n, is the number of receipts of the
item for the period under consideration, FI is the number of
receipts for a particular delivery time segment coming from
a given source of supply. and MI is the midpoint of the
delivery time segment days allowed for shipping for a par-
ticular priority coming from a Jgiven source (8 for the time
segment 1-15 days) (8:19-53). The VOD 1s calculated during
the requirements computation each time an i1tem is demanded
or quarterly during file status. The VOO 1s calculated
quarterly for items with 100 or more receipts. These values
are then used in the formula

SLQ = C * (0&ST * VOD + DDR** VOO) 1/2 (7]

(8:19-53)

where C is a multiplier which increases the safety level of
stocks according to the perceived criticality of the unit's
mission and SLQ 1s the safety level quantity. the amount of
stock to hold to prevent stockouts due to variations in
shipping time and lead time. demand. (O&ST as used in this

equation is the mean of historical O&ST's recorded for items

11




with a particular priority coming from a given source of
supply.)

Economic Order Quantity Demand Level. Once the neces-

sary parameters are calculated. the economic order quantity
demand level may be calculated as follows:

EOQDL= TRUNC [EOQ + O&STQ + SLQ + .999] [8]

(8:19-52)

where TRUNC means only the integer portion of the number 1is
retained and the .999 serves as a round up factor. The
EOQDL may be considered the amount of stock to hold which
minimizes cost of holding and ordering while limiting stock-
outs due to fluctuations in shipping time and lead-time
demand.

Thus. as equations 3, 4, 5, and 7 show, the daily de-
mand rate (estimated demand) 15 the backbone of the entire
SB3SS stockage policy. Blazer noted that "The forecast for
demand is the biggest factor in determining the depth of
stock"” (4:1). It appears in the basic EOQ formula, the
order and ship time calculation. and the safety level
computation. Substantial errors in this value would
certainly lead to potentially costly errors in stockage
levels, either in terms of monetary expenditures or milssion

support.

12




Forecasting Methods

Because of the importance of the demand forecast, the
methods by which this value can be determined must be
examined. A number of methods of forecasting demand are
available. Fildes divides them into three major categories:

The judgmental--where individual opinions are pro-
cessed, perhaps in a complicated fashion.

The extrapolative——where forecasts are made for a
particular variable using only that variable's past
history. The patterns identified in the past are
assumed to hold over to the future{.]

The casual (or structural)—--where an attempt is
made to identify relationships between variables
that have held in the past. for example, volume of
brand sales and that product's relative price. The
relationships are then assumed to hold into the
future. (11:92)

Judgmental Forecasts. Fildes divides judgmental fore-

casts into three categories: individual. committee and
Delphi forecasts (11:93). Individual forecasts are made
when a single person forms an opinion oh future demand based
on experience and familiarity with the current situation
(11:93). Committee or survey forecasts may be thought of as
occurring when a group of people., either management or
customers, form an opinion on future demand based on their
perceptions (11:93). The Delphi method uses special tech-
niques to combine the ideas of several people, but gives the
individuals feedback without allowing one person's ideas to
dominate the decision process (11:93).

Extrapolative Forecasts. According to Fildes, extrapo-

lative forecasts come in five basic forms (11:94). The
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first is trend curve analysis, the method of fitting past
demand data to a linear, exponential, or an S-curved func-
tion of time. A second form is decomposition. where a time
series is broken into (1) its long-term trend. (2) its
cyclical component—--long-term swings about the trend. (3)
its seasonal component--regular periocdic fluctuations in
demand. and (4) its random component—-—unpredictable fluctua-
tions. Other extrapolative forecasts are exponential
smoothing (a method "based on the weighted sum of past
observations"”)., and Box-Jenkins (a systematic approach that
finds the best particular method and weighted sums of a
choice of models) (11:94). The final approaches are Bayes-
ian methods that permit human intervention in a modified
exponential smoothing method to account for known changes in
the environment (11:94).

Causal and Structural Models. The last group of fore-
casting methods Fildes mentions are the causal models
(11:95). These methods are generally more sophisticated and
data intensive.

Fildes identifies a number of basic causal forecasting
methods: regression, simultaneous systems, simulation,
input-output, and cross-impact analysis (11:95). The first
method. regression, involves finding a relationship between
demand and some independent variable presumed to cause the
demand (11:95). Related to this method are simultaneous
system models which predict several dependent wvariables from

several independent wvariables (11:95). The third modeling
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technique is simulation. Simulation models are more con-
cerned with relationships and less concerned with strict
mathematical analysis (11:95). Another type of model is the
input-output model which capitalizes the fact that for a
given output, a certain input must be available (11:95).
Once the output is known the input level can be obtained.
The final model is called cross-impact analysis (11:95).

Its rationale is that demands are based on the occurrence of
certain events. If the probabilities of those events oc-
curring can be estimated, then demands can be forecast.

This type of analysis can be carried out through several
layers of events and probabilities (11:95). »

Model Summary. The choice of which method should be

used in a given circumstance depends on numerous factors.
In fact, "no one method can be relied on to produce the
‘best' forecasts in all circumstances" (11:96). Table 1
gives Fildes' opinion of the relative strengths and weak-
nesses of the different methods. Fildes judges each fore-—
casting method according to seven parameters: (1) the
relative number of data points required to use the method
(DATA): (2) the statistical basis of the method, is it
intuitive or not? (BASIS): (3) the difficulty of setting up
the method (SET-UP): (4) the relative ease of using the
method (EASE): (5) the comprehensibility of the method--how
readily managers can understand the intricacies of the
method (COMP.); (6) the assessability of the method--how

easily the model can be evaluated. a measure of how specific
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the model is (ASSES.): and (7) the reported effectiveness--
how much the model has been compared to and evaluated

against other models in the literature (EFFECT).

Table I. An Evaluation of Various Farecasting Procedures

METROD 187NV N VYo SN 50 ) S - X=) SRR O W) | < B 51 S S 5 3 3 T | ‘

JUDGMENTAL

INDIVIDUAL 0 0 0 0 4 2 4

COMMITTEE 0 1 1 0 4 1 2

DELPHI 0 1 2 0 4 1 2

EXTRAPOLATIVE

TREND CURVES 2 2 1 1 4 4 3

DECOMPOSITION 2 1 2 1 3 4 3

EXPONENTIAL 1 1 1 1 3 4 3
SMOOTHING

BOX-JENKINS 3 3 3 2 1 4 4

BAYESIAN 1 2 3 2 1 4 1

CAUSAL

SINGLE FQN 3 3 3 2 2 4 3

SIMULTANBOUS 4 4 4 4 1 4 2
SYSTEM

SIMULATION 24 2 4 2 2 2 1

INPUT-OUTPUT 4 3 4 2 1 4 1

CROSS-IMPACT 1 3 4 3 2 1 1

("0" is low, and "4" is high)
Adapted from (11:100)

Time Series

Time series analysis uses past data to predict the
future (29:41). By determining how the data changed over
time in the past, the future may be predicted (29:41). Data
behavior may be broken into five interacting components:
“levels, trends. seasonal variations. cyclical variations.
and random variations"(29:41). These are illustrated in
Figure 1. The first component is the level component. This
1s the "central tendency of a time series at any given
time” (29:41). The trend is the smooth line that represents
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Figure 1. Time Series Components (29:42)
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the long term pattern of the series (29:41). (It should be
noted that trend and level components are essentially mutu-
ally exclusive.) Seasonal variations are fluctuations above
and below the trend or level line which repeat from season
to season. Normally thought of as being annual, some sea-
sons are weekly or even daily. Cyclical variations are
those that occur over longer time periods than seasonal
variations and tend to be less consistent (29:41). They
could be construed to be related to long-term business
cycles if appropriate. Random variations are those 1n the
data which cannot be accounted for otherwise and have no

identifiable pattern.

Exponential Smoocthing

Of the various forecaéting techniques, exponential
smoothing offers one of the best combinations of accuracy
and low data processing and retention requirements. This
conclusion is supported in full by the literature. Brown
comments that accuracy. simplicity of computation. and
flexibility to adjust the rate of response were three of the
most "frequently important” criteria of a forecasting method
and noted that exponential smoothing benefited from these
qualities (6:91). Peterson and Silver point out that be-
cause of the limited data and calculation requirements of
simple exponential smoothing models they are well suited to
handling thousands of items (25:111). Tersine notes 'the

major advantage of [simple exponential smoothingl is that
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ect of all previoug data 12 included in the previous
forecast figure, so only one number needs to¢ be retained to
represent the demand history"” (29:53). Blazer notes that

"time series models are the most practical models for fore-

"

casting Alr Foree EOQ items.” making special mention of

single (or simple) exponential smoothing (4:22). In fact.
Patterson notes that the SB3S uses a modified exponential

smoathing model (23:3) . Since exponential smeosthing 15 oon-

D
Lan ]
=
—

sidered =zo us a more detailed explanation of how 1!

works 1s 1in order.

Moving Averages. Mary derivations of the exponential

smoothing formula use moving averages as a starting point
(6: 18; 30). The bases of moving averages and exponential
smoothing are lacking in statistical rigor (30:55)., bhut they
are =till very useful and intuitively valid in spite of
rheir lack of a rigorous mathematical foundation. The 1dea
behind moving averages is to forecast hased on an average ot
recent actual data (30:55). The average of a predetermined

number of recent data points 15 used to forecast the next

" 0

period's demand. The average "moves” because as newer data
become available. the oldest data points are eliminated fraom
consideration; thus., the forecast reflects only the most

recent values (30:55). The moving averages formula is:

Ft+l =(Xt + Xt-l + ...+ Xt—N+1)/N (91
t
= (Z Xi)/N [ 1]
i=t-N+1




or

= [(Xg) — 1 (X ¢ _Ney?1/N +Ft (18:47£ié§
where N 1s the number of periods in the forecast., X is the
demand in a period, F is the forecast for a period. t is the
current period, and t+l is the next period.

It is apparent from these formulas that the greater the
value of N, the more stable the forecast. The smaller the
value of N. the faster the forecast reacts to changes
(18:46). In other words, a large value of N would be appro-
priate for forecasting stable demand with relatively large
random fluctuations, because the forecast would not follow
the random variations, but would smooth the fluctuations.

In contrast, a small value of N would react quickly to
changes in demand and follow changes in demand quickly. In
both cases. moving averages forecasts would tend to lag or
follow the demand pattern (18:46).

According to Meredith, however, exponential smoothing
has two major advantages over moving averages: smaller data-
requirements and greater ease of computation (20:91). Yet.
exponential smoothing balances the need to smooth the fore-
casts with a number of periods of historical data. and the
need to forecast new trends with recent data.

Exponential Smoothing. The basic formula for exponen-

tial smoothing can be developed from [11]. Assuming the

value of xt-N+] is nnavailable. a reasonable approximation
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for stationary data would be Ft, the forecast for the prev-
ious period. Substituting into [11]) results in

Fiy1 = X¢/N - F, /N + Fy (185ig}
Equation 12 can be rewritten as

Feyp = (I/N)Xe + (1-1/N)Fy (IBEigi
This results in a forecast derived from weighting Xt (the
most recent data point) with 1/N and weighting Ft (the most
recent forecast) with 1-1/N. Substituting a smoothing
coefficient, a. for 1/N. where 0 ¢ a < 1, [(14] becomes

| () Xy + (1-a)Fy (18Ei§1
Seppanen, referenced by Patterson, observes that in the SB3S
a = N/(365+N) for recent demands where N is the number of
days since the last semiannual adjustment (23:3). Exponen-
tial smoothing's reduced data storage requirements can be
readily seen: only the most recent demand. the most recent

forecast and a must be retained. Rewriting [14] yields

F = F, + a(X, - F.) {15}
t
*1 t t t (18:50)
or
F = F_ + e [16]
£+l t t (18:50)

where e, 1is the forecast error for period t. 35o0. the new
forecast for period t + 1 is actually the previous period's
forecast plus a fraction of the error between forecast and

demand. Intuitively, this seems appropriate that a good
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estimator of the future would be the last forecast plus a
portion of the error in making that forecast (18:48-50).

Exponential Smoothing with Seasonal Factor.

Winters (one of the original developers of exponential
smoothing) expanded the usefulness of the model by incor-
porating a seasonal demand factor. He started by assuming
that any seasonality was proportional to the demand of that
period rather than being additive. or independent of demand
{32:327). The first equation of the Winters' model can be

expressed as:

S, = (X, /1,_; + (1-aOF__ {171
t to oL -t (32:328
where L 1s the number of periods in one seascnal cycle, (for

example, for a yearly cycle L would be 12) and S 1s the
"estimate of the expected deseasonalized sales rate in
period t" (32:328). The estimated seasonal factor for the
period t. It . can be calculated using

Iy = (B)Xe/S¢ + (1-B)I, (32:5521
where f 1s the seasonal smoothing factor. which must be
chosen empirically. The seasonal! factor. It' 1s chosen so
that like periods are forecast: the last corresponding
period must be used in the calculations. For example. one
must use last year's June It value to make this year's June
forecast (32:328). The actual forecast 1s made using:

F = S *I _ [19]
t+M tot-LeM (32:328)




where M is the number of periods into the future to fore-
cast (32:327-329).

Exponential Smoothing with Trend and Seasonal

Factors. The previous model does not, however. compensate
for any type of trend. Winters also developed a trend and
seasonal model where:

1) (20]
t=132.329. 18:72)

Sy = (X /Ty + (1-a)(Fy 4 + b

The bt—l factor accounts for an additive trend. The season-
al factor remains unchanged from [18]:

I, = (B)X, /S5, + (1-B)YI,_ {21}

t ot -t L (32:330:; 18:72)

The trend factor resembles [19] and [20)] in its structure:

(32:330)

b, = (P)(Stcst~l) + (1-THby 4 [22]

t (32:330: 18:72)
The smoothing constant, I', must be chosen arbitrarily. The
final forecast becomes
= *M) * 9
Feem (e e pam (32:330; 18199)
To obtain a forecast using either of these methods. St
is first calculated using It-l because I, cannot be deter-
mined until St is calculated. Then It and by, if required.
can be obtained. Finally Ft+M can be found from [19] or
(23] (32:329-330: 18:72-73).

Useful as Winters' method is, it has one major draw-

back: "1t requires three smoothing parameters" (18:79).
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This greatly increases the data requirements and computer
time required to generate forecasts. In response to this
concern, Zehna and Taylor noted as long agoc as 1975 that
computer processing times should not "be a significant
factor i1n the selection of torecasting techniques'" because
of the great increases in computer power and speed (33:38).
Ammer adds that 1n general:

Exponential smoothing is not a perfect technique
for forecasting demand. Like other statistical
techniques, it is based on past demand and obvi-
ously cannot allow for new and unpredicted changes
in demand. In addition. it may help increase in-
ventories because . . . small shifts in weekly
demand can be magnified into substantial shifts in
order points when trend is taken i1nto account.
Despite its weaknesses. however. exponential
smoothing is an excellent technique, especially
when used in conjunction with electronic data pro-
cessing to control order points of thousands of
low-value C items. (2:305)

Box-Jenkins

A more sophisticated methodology for forecasting which
may outperform exponential smoothing was developed by Box
and Jenkins to create‘a class of forecast models known as_
ARIMA models. This method is based on two major premises
(30:171). First, the data are assumed to be in the form of
a time series, in which observations are taken over a period
of time., and the forecast is needed for some future period
in time (30:171-172). Second, the data are assuﬁed to be
following a pattern with an obscuring random component

(30:171-172). The objective of the forecaster. then. is to




identify the pattern and use it to make forecasts (30:171-
172).

Box-Jenkins can be considered a process. The follow-
ing iterative procedure, diagrammed in Figure 2, is recom-
mended by Box and Jenkins to develop a forecast (5:19). The
essential idea is that an initial class of model is selected
based on certain factors (to be discussed in greater detail
later), and a model is tentatively identified (5:18). The
model parameters are then estimated and the model is eval-
uated against certain diagnostic checks (5:19). Based on
the evaluation, either the model is used, or another model
is tested (5:19). Eventually, a model meeting the diagnos-
tic requirements is developed and the model is selected to

make forecasts (5:19).

POSTULATE IDENTIFY ESTIMATE
CLASS OF |y | TENTATIVE |[m==br oAR AMETERS™
MODELS MODEL
'H FAIL
FORECAST DIAGNOSTIC J
MODEL

Figure 2. Iterative Model Building Process (5:19)
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The Box-Jenkins methodology incorporates two major
types of models which together make up the class of autore-
gressive integrated moving average processes (ARIMA
processes) (5:8). In order to better understand the ter-
minology involved. the backshift operator 1s first defined
as

= 2
P2 T Fea (é?g§

The more general case 1is

BTz, =

[25)

t-m (5:8)

2t

Another important operator i1s the backward difference
operator. 6. which may be defined by the following equation:
Sz, = (1-Byz, = =z, — z [26]
t -
t t t-1 (5:8)
These operators are computational artifacts which make the
mathematical analysis more straightforward and permit the

simplification of a number of equations.

Autoregressive Models. A very useful model in the Box-
Jenkins methodology with practical applications 1s the
autoregressive model. In this model the 'current value of

the process” is a function of the previous values of the

process and some additional factor or shock, a, (3:9). It
the values of the process at times t, t-1, t-2 . . . are
represented by Zp. Zpoqr Zpog o-o- - then 2y, Zypoq- ét—z can

be the differences of each Zy from the mean u. as in Ty = Ty

- u. Then
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z £ " 2 1%2¢-1 ¢2Zt—2 + . . .+ ¢pzt—p + a, (27]
(5:9)
is an autoregressive (AR) process of order p. Using the
autoregressive operator of order p
¢B =1 - 9B - 8,8 - . . . - g BP (28]
(5:9)

the AR model may be written

6(Blz, = a (29]
t t (5:9)
oY

z, = ¥(Ba 130]
t t (5:9)

where -1
$(B) = ¢~ (B) [(31]
(5:10)

Moving Average Models. A second model, the moving

average process. is based on the a;'s. the error terms. A

moving average (MA) process of order q may be written

~

z, = a, — 6,8, 4 =643, _~» - . . . -8 a3, _ (32]
t t 19t-~1 29 -2 q*t-q (5:101
If a moving average operator 1is defined as
6(B) =1 -6,B-6,82 - . . . -6 BY (33]
! 2 q (5:10)
then the MA model simplifies to
z, = 8(Bla, [34]

(5:10)

or




1

a, = 2z, (1 - ©B) (sfig;
or ~
s 1%
where
7(B) = (1-6B)~ ! [37]
(5:50)

Autoreqgressive — Moving Average Models. If the data

support it, a combination of AR and MA terms 1s necessary.
The ARMA model is simply an AR and an MA model combined. It

may be written as follows:

~

8,8, _4 - . . . =6 _a,_ {381
17e-1 1°t=q (5:11)
or in shorthand
qS(B)zt = e(B)at [39]
(5:11)

Although the AR. MA, or combined models suit stationary time
series (those that vary about a constant mean). frequently
the data call for a non-stationary model that will account
for changes in the mean of the process. By introducing the
"generalized autoregressive operator"” ¢(B) and the station-

ary operator. &6(B). for the AR process. one can write (5:11)

d

¢(B)Zt = g(B) (1-B) zZy = G(B)at [40]

(5:11)
where the term (1-B) accomplishes the differencing. In
other words. an ARMA process is differenced by creating a

new series with the differences between the value of one

28




period and the value of the previous period. The new series

is a more generalized model. This gives a general model

¢(B)wt = G(B)at (41]
(5:11)
where
d
w, = 62 {421
t t (5:11)

Thus, by taking d differences of the process to make it
stationary, nonstationary behavior may be modeled. This
last process described is called an autoregressive
integrated moving average (ARIMA) process of order (p. d. q)
(5:11) .

Figure 3 illustrates how the ARIMA process 'filters"”
random errors through the three operations to yield the time
series.

Seasconality. One major characteristic of a seasconal

time series is that every s (for annual seasonality of
monthly data, s = 12) periods a similar observation may be
made. Another characteristic is that successive months {(1in
the case of annual seasonality) will also be similar. For
example, an observation made in October will be similar to
one made the previous October and all other October observa-
tions. Additionally., the October observation will be
similar to September's and November's observations for the

same year. (5:303-304)
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Figure 3. Filtering Process to Convert White Noise to
Time Series (5:12)

A model of the form
28560z, = @(BS)q, (43]
(5:304)
may be written where s = 12, 65 = 1 - B, and &(B%) and
(B%) "are polynomials in B® of degrees P and Q. respective;
ly. and satisfying stationarity and invertibility condi-
tions" (5:304). A stationary model randomly wvaries about
one mean (5:7) and has the condition that¥(B) is within the
range -1 to +1 (5:51). An inveytible model is slightly more
difficult to explain. Because the moving average model de-
pends on the error terms for its value of Zy if the ab-
solute values of the individual 8's are greater than one,

the weights of the a,'s will increase. leading to a
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nonstationary condition (5:50). Thus the condition of
invertibility 1s imposed, that the sum of the eiBj = m(B) 1is
within the range -1 to +1 (5:51).

Having defined and described Box-Jenkins models the
methodology behind applying them will be discussed in

Chapter 3.

Previocus Studies

The management of seasonal items has received much
attention in the literature (6; 21; 25: 29: 30). although
few military studies have been done. One of these was the
Air Force Institute of Technology thesis by Gilloth, Ohl.
and Wells in 1979 titled "An Evaluation of Seascnality in
the United States Air Force Medical Material Management
System” (MMMS) (14). After examining the demand patterns of
1886 1items (14:36). they determined that seasonality was
evident in 25 - 35% of the medical supplies examined. while
only about 8 - 9% of the items were seasonal over both the
years tested. They concluded that double exponential
smoothing was the best forecasting method tested. using mean
squared error as the selection criteria (14:28.58). Other
forecasting methods examined were the current MMMS system
(12 month moving average)., and adaptive response rate ex-
ponential smoothing (a method in which the smoothing con-
stant i1s automatically varied as the demand pattern changes)
(14:43). One of their recommendations was for increased

data retention to benefit future studies, since they only
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had two years of non-consecutive data with which to work
(14:59). This lack of data limited considerably the gen-
eralizability of their research (14:20).

Other studies include one done by Orchowsky 1in 1985 on
clothing items. in which some items investigated showed
seasonal demands. but most items did not (22:30-31). This
study examined 4563 individual national stock numbers,
managed by the Defense Logistics Agency. which were grouped
into 300 Procurement Grouping Codes (PGC) (22:3). (A PGC 1s
a group of like clothing items differentiated only by size
(22:3)). Orchowsky used the autocorrelation function (ACF?
for 12 lags to determine if a random or seasonal pattern
existed (22:10). Briefly '"the ACF is a measure of the
relationship (correlation) of the time series with itself.
lagged by some number of time periods" (22:10). For example
data points, taken monthly, 12 periods apart. with a high
autocorrelation would indicate a strong correspondence on a
seasonal basis——-seasonal data.

Fischer and Gibson, 1n 1971. examined single. double
{with a trend) and triple (with a quadratic component)
exponential smoothing and a 12 month moving average (12:9).
Their sample consisted of 34 EOQ items from Wright-Patterson
AFB Base Supply. Fischer and Gibson were disappointed in
the performance of tripfe exponential smoothing. expecting
it to perform better than it did (12:67). They concluded
that an inadequate database. with only 22 months of data

available, prevented the determination of acceptable
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smoothing constants (12:71). The smoothing constants were
"optimized" by testing several values for the minimum sum of
squared errors (12:45). Statistically., the four models had
the same mean square error, with or without "optimized"
smoothing constants (12:49).

A fourth study. undertaken by Bittel and Gartner in
1982, examined demand for consumable items at the depot
level (3). Their analysis of 800 line items (3:42) used the
following models (3:56):

1. Naive (the next period forecast 1s the last
period's actual value)

[

Simple moving average (4, 8., and 12 periods)

3. Double moving average (4. 8. and 12 periods)
4. Single exponential smoothing (a=0.2 and 0.83)
5. Focus forecasting (a "multi-model technique which

employs simplistic forecasting assumptions and
computer simulation to forecast demand” (3:49-
501)

6. Simple regression (a method of fitting the line
with the least mean squared error to the data)

7. S—curve analysis (a model used to describe and
"estimate the life cycle of technologies and prod-
ucts. An S—-curve has a slow start, a rather steep
growth. and a saturation that comes after some
period of time" (19:169))

3. Exponential growth: (a model which describes con-
stant growth rates over long periods of time
(19:171))

9. Eclectic forecasting (similar to focus forecast-

ing. but uses more complex techniques (3:50))
Although Bittel and Gartner were looking at a different
echelon of demand. they noted that simple exponential

smoothing gave the lowest mean average dewviation and
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variance of all the methods tested. However, they observed
that the method was statistically equivalent to single I[sic)
moving averages with four and eight month periods (3:79).
Additionally. they noted that the data '"showed some normal
demand patterns with ccnsiderable random variation'" (3:751).

Another study which indirectly examined seasonality was
one by Gertcher in 1982 (13). As part of his research into
different methods of forecasting demand for consumable
items. he used triple exponential smoothing, which assumes a
quadratic shape to a plot of the historical demand data
(13:20). His major difficulties in using triple exponential
smoothing were poot initialization constants and the lack of
fit of the demand data to the assumed second order
polynomial (13:44). In other words. the data did not fully
exhibit the guadratic pattern of the model he was using.

The consensus of most of these studies is summed Qp in
a study on demand variance by Blazer. who noted that the
nemesis of the analysis of competing forecasting methods 1is
a lack of sufficient demand data (4:3). He notcs that 10
years of data is desirable. Yet Gilloth, Ohl. and Wells
used data from calendar years 1975 and 1977 (14:20);
Orchowsky was able to obtain 33 months of data (22:2);
Zehna and Taylor had only 8 quarters of data (33:22). Each
of these efforts sutfered from the lack of data maintained

by the SBSS.
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Determination of Seasonality

Peckham gives three criteria for manually determining
if seasonal trends exist:

(1) The peak demand should be substantially higher

than the random fiuctuations <r '"'nois=’ i1n the

demand.

(2) The peak demand must occur during the same time
period each year.

(3) The reason for the peak must be known. (25:40-41)
Based on this, a plot of the data wculd frequently give an
indicaticon of whether or not an item erxhibitsd seasonal
demands. A strong indication of seasonality wculd be a
pattern of demands generally repeating itself over several
years, with peaks and valleys being considered significant
if greater than two standard deviations from the mean de-
mand. This would give ﬁhe demand spikes a 4% chance of
being considered significant when they actually were not,
assuming a normal distribution of demands.

However., manually determining seasonality in this fash-
ion does not lend itself to a statistically verifiable
analysis. Without a definition of "substantially higher"”
different analysts may arrive at different conclusions re-
garding the same data. A method relying less on intuiticon,
the ACF as used hy Orchowsky (23), could be readily used to
detect seasonality in data.

To better understand autocorrelation. simple corre-
lation will be defined first, as 1in a discussion by Wheel-

wright and Makridakis (30:116). Simple correlation is a
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measure of the relationship between two variables. A
correlation ccefficient. r, which ranges from -1 to +1. 1s
used to measure the strength ¢of the relationship. With
perfect correlation, r would be either *1: with no correla-
tion v would be 0. A value of +1 1s assigned tor a pozitive
correlation, while a value ¢f -1 1s assigned for a negative
correlation. In other words. r would be +1 between two
1dentical sets of numbers, and -1 between a set of negative
numbers and the absolute values of those same numbers. In
addition. an r of 0 implies there is no relationship between
the two variables., that 1s: they are caompletely independe:r.t
and a change 1n one has absolutely no effect on the cther.
(30:116, 174

An autocorrelation coefficient extends this same 1dea
to "values of the same variable but at different time
periods” (30:174). 1In this case, the data under considera-
tion are made 1nto several different data sets., each treated
as a different variable. The first data set consists of the
original data. The second data set is the same data, with
the first value removed, and all others moved up one spot.
Thus, the original value far period 1 is dropped. the orig:-
nal value for pericd 2 becomes the new value for pericd 1,
the original value for period 3 becomes the new value for
perind 2 and so on. Then this new. second. data set i1is used
to generate a third data set using the same principles. The
serond data set's value for period 1 15 dropped. the second

data set's value for period 2 becomes the newest value for
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period 1. the second data set's value for period 3 becomes
the newest value for period 2 and so on. This is done as
long as data 1s available to continue creating new data
sets. (30:174-175)

Wheelwright and Makridakis continue by observing that
earh data set can now be considered a new varilable., and a
correlation coefficient can be calculated between each of
the data sets (30:175). The correlation coefficient tells
how data a certain number of time periods apart is cor-
related. The correlation between the original data set and
the second data set shows how data cne period (lag) apart
are correlated and whether they tend tc move 1in the same
direction or not. The same can also be done with the rest
of the data sets (30:175). The correlation between the
original data and the lagged data 1s obtained. 3Since the
correlation is between the data and itself. one or more
periods removed, the correilations are called autocorrela-
tions (30:175-176). The ACF 1s useful 1in identifying sea-
sonal data because it can be used to identify at which lags
the correlations are largest. If the ACF for the 12th lag
for monthly data (data points 12 months apart) 1s statisti-
cally significant then the data can be reasonably presumed

seasonal (30:176).

Forecast Performance Measures

A number of methods are available to determine how

"good" a particular forecasting method is at forecasting.
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The basic assumption of any forecasting technique is that
there is a fundamental pattern to the observations. plus
some random error or fluctuations. The object of fore-
casting then. is to minimize those errors. Error is usually
defined as the difference between the actual value and the
forecasted wvalue.

A method of evaluating those errors is necessary. A
simplistic method of analyzing error would be to average all
the errors. but since pasitive and negative errors may
cancel each other out. this could lead to an erroneous
assumpfticon that the overall errors are small. An improve-
ment would be to average the absolute value of the errors.
but this would weight all errors the same. Yet another
alternative would be to average the squared errcrs. This
more heavily penalizes large errors in favor of small ones.
An error of 4 would be counted 16 times as much as an error
of 1. This method. the Mean Squared Error (MSE). will be

used in this study.

Conclusions

The SB35 has a sophisticated demand forecasting system
designed to compute an average daily demand rate, which is
used to establish stockage levels. The system can be
thought of as a modified exponential smoothing model. An
examination of a variety of forecasting methods revealed a
number of potential forecasting methods. However., experts

tend to agree that if many items' demand must k& forecast,
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exponential smcothing has several advantages over other
methods, especially 1ts minimal computational and data
storage requirements. Exponential smoothing is a very
simple methad of fcrecasting., although the addition of fterms
t compensate for trend and seasonality added considerable
complexity to the model. In spite of this., exponential
smocothing remains the model of choice for forecasting large
numbers of 1items because of its modest requirements. The
Box-=Jenkins methodology 1s an powerful way of generating the
best time series or ARIMA model to fit a given data set.
Although relatively difficult to use. it c¢cffers confidencs
intervals for hoth parameters and estimates, in contrast
with the intuitive exponential smoothing techniques. In
addition. the Box—Jenkins methodology is quite data inten-
sive.

Little military research has been performed 1n examin-
ing how well seasonal forecasting methods perform with
consumablie SBSS items. Previous studies that did attempt
this had mixed success, primarily because of the lack of
sufficient data.

The next chapter discusses how the actual research was
conducted. It also describes how the data were obtained and

analyzed.
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IITI. Methodcology

Introduction

This chapter discusses the data collected for the re-
search and how it was obtained, manipulated. and finally
used. The chapter also mentilons the limitations and aszump-—
tions involved in the study. The actual research plan :s
highlighted along with details of the SBSS. Exponential

Smoothing and Box-Jenkins methodologies.

Data Collection

Population and Sampie. The pcpulation of interest 1s

the entire set of consumable i1tems used by the United States
Air Force. The sample will consist of twelve out ot 77
consumable items identified as seasonal by Langley AFB. VA.
which are listed in Attachment 1. Only twelve 1tems were
selected for study because of the di1fficulty in extracting
demand data from transaction history tapes.

The data are not generalizable to the entire popul-
ation of Air Force bases because the selection of Langley ac
a study base was non-random. Demand patterns depend cn a
number of factors including how and when certain items are
ordered at a facility. the weapons systems at the facility.
the mission of the facility. and potentially 1ts geographic
location.

Assumptions. The followlng assumptions were made re-

garding this investigation:
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1. Responses from the Stock Control Section at
Langley AFB accurately reflect its situation.

2. Data transmitted to and from the Air Force Logis-
tics Management Center (AFLMC) is accurate and
complete.

3. Changes in the climatic environment of Langley AFB
over the data history are such that they do not
significantly 1impact the seasonality of the data.

Limitations. The following limitations are apparent in

this 1nvestigation:

1. The limited number of both bases investigated and
years of data do not permit generalizability of
the results Air Force-wide.

2. Variations 1in the methods Langley AFB's Stock
Control Section uses to determine which i1tems are
seasonal or not may make those 1tems they deter-
mine to be seasonal unrepresentative of other
bases.

3. No‘aircraft parts were identified as seasonal:
only 1tems such as cold weather gear and deicers
were ldentified as seasonal.

Data Collection. The data came from two sources.

First, Mr Almond. the Stock Control Officer at Langley AFB
contributed a list of consumable i1tems that the base
considers seasonal. The purpose in obtaining this list was

to determine 1f selected items on the list 1ndeed hold
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seasonal characteristics in their demand patterns and to
develop forecast mcdels for selected items from the sample.
The second source of data was the database at AFLMC.
This database was started to provide historical data beyond
tnat normally held by the SB33. The necessary data were ex-
tracted {rom two types of records: item records and trans-
action histories. Item records are the maior record on each
item that. together with detail records. collects the data
required "to manage most items under nearly all circum-
stances” (8:4-84). Item records were obtained that retlect
the end of March 1989. Transaction histories are a con-
aenlidated record »f all transactions that affect the i1nven-
tory of an 1tem. Untfortunately ftransaction histories were
only availlable for the dates marked by an X in Figqure 4.
The extracted data i1ncluded national stock number: nomen-
clature: expendability: repailrability: recoverability catea-
ory code (ERRC): cumulative recurring demands: dates of
first demands: and demands. The tirst three data sets are

available from the 1tem record.

YEAR |JAN|FEB|MAR|APRIMAY|JUN]JUL}AUG|SEP]OCT|NOV|DEC
1982 X X X X X X X X X X

1983 X X X X X X X X X X

1986 X X X

1987 X X X X X X X X X X

1988 X X X X X X X X X X X

1989 X X X X

Figure 4. Data Available (X) from AFLMC




The demand data were obtained through analysis of the
transaction histories for each item for the period of
interest. A demand was considered to have occurred for
every Document Identifier Code (DIC) of ISU (for issue) and
DUO (for due-out) for the item. As a cheé¢k of the ISU and
DOR codes. Type Transaction Phrase and Codes (TTPC) were
used (26). A TTPC code of "1A" which decreases the avail-
able quantity recorded under the item record detail. a code
of "2D" which adds and increases the due-out detail. a code
of "3Q" which indicates a post-post (computer off-line)
1ssue were the codes considered to substantiate a request
for an issue from stock (8:3-134-137).

Both mainframe and personal computers were used to
éxtract the data. After the data were shipped from AFLMC on
magnetic tape. they were loaded on the Air Force Institute
of Techrniology's VAX mainframe computer. One of several FOR-
TRAN programs were then used (an example 1s in Attachment 2
to extract only those stock numbers selected for further
study and load ;he needed portions of the transacticn re-
cords for each stock number intoc a separate file. Each file
was then transferred via modem %o a floppy diskette where 1t
was accessible to an M3-DOS personal computer. Once on a
diskette, each file was imported i1nto Quattro. a spreadsheet
program. Then the database management function of OQuattro
was used to extract only those records with either an ISU or
DUO DIC code and with a transaction date within a given

month. TTPC codes were manunally verified along with the
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requested stock number to ensure the item requested was the
item ordered. The number of units requested for each demand
transaction were summed to give a final number of units de-
manded for each month for each stock number. This figure
was hand-copied and subsequently verified. The resulting
demands for the twelve stock numbers for each available
month are listed in Attachment 3.

One problem with the data was the presence of a gap
between December 1983 and August 1986. According to Mr.
Miller of the AFLMC all of the data in the AFLMC database
has a similar gap (varying in length at different bases) be-
cause of the installation of new base supply computer sys-
tems during that time period (21). He stated that the AFLMC
has '"'given you everything we've got" (21). Because the Bow-
Jenkins methodoclogy requires so much data. it would be
impossible to develop any models on the relatively con-
t1nuous Angust 1986 through April 1989 data.

To determine the feasibilifty of using data from before
and af;er the gap the following procedure was used. The
demand data from 1982 and 1983 for each stock number was
compared to the same stock number's demand date from 1987,
1988, and 1989 to statistically determine 1f the two graoups
of data came from the same distribution. A Wilcomon Signed
Rank Test was used. This technique tests if two samples
came from the same population distribution or not. The
results of the test are in Table TI. They indicate that

only seven of fhe twelve 1tems had demand data useable for
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Table II. Wilcoxon Signed Rank Test Results for Similar
Distributions
- ]

Wilcoxon Signed Rank Test Results

N3N P-VALUE SAME DISTRIBUTION
YES/NO ?
1 .4902 YES
2 .0547 NO
3 .4885 YES
4 .0269 NO
5 .1814 YFS
6 .0049 NO
7 .0461 NO
3 .0737 NO
9 .1052 YES
10 .4885 YES
11 .3816 YES
12 .5251 YES

the Box~Jenkins methodology with a 90% confidence level. If
the P~-value was greater than 0.1 then the null hypothesis
that the two distributions were the same could not be re-
jected. For these seven items the 1982 and 1983 demand data
were treated as if they came from the years 1985 and 1986.
and combined with the 1987 and 1988 data. The 1989 demand
data were used as a holdout sample for comparison purposes.
Since the exponential smoothing techniques require less
data, they were run using longest continuous string of data
available: August 1987 through December 1988, with the 1989
demand data saved as a hold-out sample. Thus, the exponen-
tial smoothing forecasts are based on a slightly different

database than the ARIMA forecasts.
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Unfortunately. as was noted in Figure 4, the data was
incomplete, and several months' data was lacking in addition
to the 1983-1986 gap. This posed a severe problem for time

series analysis since continuous data 1s essential to the

methodology. FPeterson and Silver note that "data will not
always be available. [so one] must resort to asking knowl-
edgeable persons to provide . . . guesstimates for the

values of level. trend., and seasonal factors" (25:120).
They additionally note that the forecasts obtained from
incomplete data augmented by expert opinion must be care-
fully monitored and the forecasting model updated as new
data becomes availlable.

To fill in the missing data points. a Delphi technique
was used. This technique involves using experts to farecast
when data 1s otherwise unavailable. The method ztarts with
asking the experts to independently arrive at a forecast.
Then the results from the first set of forecasts are sum-
marized as a simple mean and range (the highest and lowes*®
values) (17:23). Each expert is then asked if, based ~on the
mean and range of the previous results, he or she desires to
keep the same forecast or change 1t. Within three or four
iterations. depending on the nature of the problem and the
data. a consensus 1s arrived at and the experts no longer
wish to change theilr forecasts (17:23).

In this study. five supply officers were asked to act

P

as experts, evaluate the availlable data. and generate values
the

f

o)

r missing data points using their knowledge of both
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the available demand data and forecasting techniques. At-
rachment 4 lists the demand data used in the exponential
smoothing forecasts. while Figures 10-21 offer graphical
representations of the same values. Similarly. Attachment 5
l1#rs the demand data used in the Box-Jenkins forecasts,
while Attachment 6 offers a graphical representaticon of the
same values. The missing data peoints replaced by Delphi-
generated values a}e underlined in Attachments 4 and 5.
Rec3ll that problems with obtaining complete data forced the
nuse of slightly different data sets for the exponential
smoothing forecasts and the Box-Jenkins forecasts. In
addition. recall that the lack of complete data forced the
use of only seven National Stock Numbers (NSN) for the Bowu-~

Jenkins forecasts.

Pesearch Plan

The research guestions were addressed in the following
combination of consultation with experts. literature review,
and analysis of existing data:

1. The methods by which the SB55 currently addressec
consumable seasonal demand i1tems were reported in the liter-
ature review.

2. Other methods that could be used in the 3BSS to
address consumable seasonal demand i1tems were also 1den-
tified and discussed in the literature review.

3. Tn determine 1f 1tems currently identified as sea-

3onal by personnel at the base-level actually display
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seasonal tendencies. Stock Control personnel at Langley AFB
were asked for a list of items that are given special man-
agement attention based on suspected seascnality. The
demgnd histories of these items were evaluated to determine
1f, in fact. seasonal trends do ewmist in the data. using the
autocorrelation function.

4. To determine if a seasonally adjusted exponential
smoothing.model. a simple exponential smoothing model. an
ARIMA model, or the current 5BSS model is the best methaod
for forecasting demand for consumable seasonal demand itemsz.
the demand for the above 1tems were fcrecasted using these
four models by the following method.

Demand data. obtained from AFLMC. was divided into two
parts. Three years of data was used to define the para-
meters of each model and predict the consumption of the 1tem
during the fourth year., which was used to test the models.
The best model will have the lowest Mean Squared Error
defined as the mean of the squared differences between each
forecast and the corresponding actual demand. aé determined
ky an ANOVA test for significant differences.

5. In order to i1dentify a method that could be used bv
base~level personnel to identify seasonal items one ma3ior
difficulty must be overcome. Vital to any system of iden-
tifying seascnal data are demand data collected over three
preferably more years. Because of the number of 1items

handled by the 5B353. the amount of demand data available 13
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limited. Therefore, the response to this research question

is necessarily limited to recommendations in Chapter V.

Models

SBSS Furecasting Methodeology. As was described in

Chapter II. the daily demand rate is the SBSS demand fore-

]

cast. Essentially a simple moving average forecast. it 1
recalculated as needed (26). Whenever a demand 15 made for
an item in the SBSS. an R i1s placed in the requirements
computation flag field of the item record (8:19-31). If a
demand level has already been calculated that gquarter. then
requirements computation is performed. Requirements com-
putaticn examines how many of the item are available., how
many are needed. and whether more should be requisitioned ovr
some should bhe returned as excess. If the demand level has
not been recalculatad for the item that quarter. then %the
demand level and date of last releveling wcould be updatead
(8:19-32). Thus, for each gquarter. the demand level 1=
calculated only once., although the daily demand rate is
calculated whenever required by the 5B3S (26).

For the comparison with exponential smoothing and Beou-

calcu-

0]

Jenkins. the DDR was calculated as follows. The 35BS
lates the DDR by dividing the CRD by the current date minus

the DOFD, with several exceptions. as explained in Chapter 2
(see {1)). Two adjustmentes are made every s:ix months. The

CRD is updated to the current DDR times the lesser of the

difference between the current date and DOFD. or 365 (23:2).
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So, for items loaded on the base supply system for more than
one year. the old CRD is changed to be the current DDR times
365. Also. the DOFD is adjusted to be the maximum of the
DOFD or the difference between the current date and 3265
t23:2". Thus, the DOFD 1s adiusted to be one year agoe fer
all 1tems in the system over a year.

The item records sent by AFLMC were from the end of
March 1989. (Julian date 9090). Bésed cn the items' DOFD of
8290 (365 days prior to 9090 day). the item records had been
releveled just prior to being transmitted to AFLMC. The CRD
fia2ld (obtained from the 1tem record), divided by 365 equals
the DDR. Also, the calculated DDR., multiplied by 540, gives
the CRD after the reléveling (new CRD). (According to
Patterson 540 days are the maximum number ~f days in a
demand history (23:4). although this is not exactlvy equal t-o
365 + 180). The actual demands placed on each item were
also available s¢ that past and future CRDs could be «ab-
tained. Thus, the DDRs both before and after the releveling
could also be calculated from the CRDs.

A sample calculation (for NSN 1) will better illustrate
how this was done. Some of the 1ntermediate and fainal
values 1in the calculation ar= given 1in Table III. The item
record (new) CRD was divided by 365 to obtain the current
DDR. Since the DDR before the releveling was the CRD di-
vided by 540. the current DDR. .408. was multiplied by 540
to obtain 220. the old CRD. Then the number ~f demands

occurring in March 1989, 10. was subtracted from this CRD to
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Table IITI DDR Calculation Values
. |

DEC 88 JAN 89 FEB 89 MAR 89 APR 89
OLD NEW :
CRD 195 203 210 220 149 154
DDR 0.433 0.415 0.413 0.408 0.408 0.389
ACTUAL 8 7 10 9 -9 5
DEMAND
FCST 13.43 11.64 12.8 N/Aa 12.24 12.0¢6

y .. ______________________________________________ ]
obtain 210, the CRD at the end of February 1989. This CRD

was divided by 54C - 31 (the number of days of demand his-
tory. obtained by subtracting the number of days 1in March
from the previous number of days demand history) to obtailn
the DDR at the end of February. Thus, the end of February
DDR was multipli2d by 31 to give the forecast for the month
of March. January and December were handled the same way.
The calculation of the SBSS forecast for the month of
Apri! was more straightforward. For the April forecast. the
new CRD was divided by 365 (the new current date - DOFD) and
multiplied by 30. Although not used. the May forecast could
be obtained by adding the known April demands t¢ the new CRD
and dividing the result by 365 + 30 to obtain the new DDR.
This could be multiplied by 31 to obtain the May forecast.

Exzponential Smoothing Methodology. The model building

tor the Winters and simple exponential smoothing models was

accomplished using the commercially available M5-DOS program
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Forecast Master. The program uses time series data to
create models which it uses to generate forecasts.

Of the four exponential smoothing methods available,
two, simple exponential smoothing and Winters exponential
smoothing wer= used. Simple 2xponential smoothing was used
as being somewhat comparable to the 35BSS method. Both meth-
ods produce only a single value to be extended for all
forecast periods. Winters' seasonal exponential smoothing
models were chosen for compariscen with ARIMA models bercause
both compensate for seasonal effects.

The technique used by Forecast Master to generate
forecasts 1s quite straightforward. The program selects the
best model smoothing parameters as determined with an
ative search methcod to minimize squared error over the
historical data” (15:9-2). Each run was initialized with
the same smoothing parameters to ensure coﬁsistency. For
simple exponential smonthing a was set at 0.2. For Winters
evponential smoothing @ was also set at 0.2, £ was set at
0.05. and T was set at 0.001. After the computer settled on
a set of optimal parameters the parameter values were noted.
The forecast generation process required several steps. one
for each forecast. The first forecast was for the first
four months of 1989, using data through December 1988.  The
second forecast was for February through April 1989 using
data through January 1989, and so con. Thus. four separate
sets of forecasts. each ending 1n April 1989 (the end of the

holdout data). were made.




Box—-Jenkins Methodoloqy. The three major steps in-

volved in the Box-Jenkins methodology include identifying a
~entative model. estimating the parameter values and evalu-
ating the model. and preparing a forecast.

Identifyving a Tentative Model. The first step in

building a Box-Jenkins model 1s to identify a tentative
ARIMA mode!. As Box and Jenkins explain, model identifica-
tion 1S an 1nexact science

because the questicon of what tvpes of models occour

in practice and in what circumstances. 1s a
property of the physical worlid and cannot. there-

fore. be decided by purely mathematical argument.
(5:173)

The tentative model identifjed 1= only to be used 1f diag-
nostic tests demonstrate the model fits the data adegquately.

The first part of the model identification pracess 1
to determine 1f differencing is necessary to make the data
staticnary. Nonstationarity is identified by autorcorrela-
tion functions that do not die off (become 1nsignificant)
but appear almost linear (5:174-1795).

The second part of the process is to determine the or-
ders, p and q. of the AR and MA processes. Here the
antocorrelation function (ACE) and partial autocerrelation
functizns (PACF) are used. Before going any further. how-
ever, the partial autocorrelation function must be des-
cribed.

This analysis 1s derived from that given by Goadrich

0]

and Stellwagon 1n their guidebook to the Scientific Systeoms

forecasting program, Forecast Master (15:8-9.10). An AR

@)
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process may be identified by 1its ACF. although p remains
unknown. Since an AR process 1s essentially a regression
equation. however. p may be determined as follows. Assume k

to be the order of the regression equation

<

= a,Y -t qut—z + .. L+ qut-k t ey (4.

t (15:8-1

, i
) )

QD

—

which can be written and the values ¢f the a's determined.
In addition. an equation with k+l parameters may also be
written

+ e, [45]
T(15:8-10)

£ T X Yeoy P XY o - T Ve
If Ay, and not Appy is significant then it can be safely az-
sumed that the proper order of the equation describing the
data is k. The PACF is a function describing all the pos-
zible k's. (15:8-9.10)

If the autocorrelations decline exponentially to zero.
then an AR model 1s likely to best explain the data. Like-
wise., 1f the partial autocorrelations decline exponentially
to zero. then an MA mcdel 1s appropriate. The PACF. then.
will be zero for k greater than p and non-zero for k less
than p. The order of the AR model. p. 1s determined by ths
number of '"spikes" or significant partial autccorrelations.
in the FPACF. For example, two significant spikes indicate a
p of two. (The ACF and PACF for a sample AR 2 model. 1n
Figures 5 and 6. show significant spikes at lags 1. 2. 3.
and 6. and at lags 1 and 2. respectively.) Similarly the

order of the MA model. gq. 15 determined by the number of
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spikes in the ACF: two significant spikes is evidence of q
equal to two. (The ACF and PACF for a sample MA 2 model. 1in
Figures 7 and 8. show significant spikes at lags 1., and 2,
and at lags 1., 2. 3 and 4. respectively.) (5:175-177: 15:8-
19; 16:62-65)

Essentially the same process 1s used 1in 1dentifying
seasonal parameters. except the ACF and PACF's at lags 1Z.
24. and 36 are examined. An example of a seasonal pattern
1s presented in Figure 9. (Figure 9 shows significant
spikes at lags 1, 11, 12, and 13. with the spike at lag iz
larger than those at lags 11 and 13). The number of data
points available becomes critical in this area. because the
1dentification of seasonality depends on several years of
data. Alsc. judgement and simply trying various models
become 1mportant analysis tools. (16:171-173;

Parameter Estimaticn and Mcdel Evaluation. The

next step 1n the Box-Jenkins methodology i1s that of estima-
ting parameters and evaluating the model. The computer
program, Times, performs the parameter estimation step using
a nonlinear (Marguardt) routine which minimizes both “the

relative error in the sum of squarecs” and the relative error
1n each parameter value (31:12).

A variety of diagnostic tools are available to the ng—
Jenkins torecaster. The first of these 1s to check for
correlations 1n Lthe residuals. If the differences between

the actual and predicted wvalultes are correlated then the

medel 1s not capturing all the underlying patterns (demand
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information). Thus, the ACF of the residuals is examined
for any significant spikes (16:91-92).

The second diagnostic toel 1s to plot both the resid-
uals and their histogram. The residuals should have a
somewhat normal distribution, be randem (with no discernabl=
pattern about the mean) and have a mean not significantly
different from zero. According to Hoff., the last c¢an he
tested by determining whether or not the residual mean 1=
greater than "2 times the residual standerd errvor divided
by the square root of the number of residuals" (16:91).

A third diagnostic tool the Q-statistic (5:291-3).

-
[}

This 13 a check to see 1f a gelected group of r=ziduals
resulted from a poor model: in other words. whether or ncot
they are correlated as a group. If the first K autocorrela-
tinns are used 1n the formula

Q =n

2 .
rs(a) [46)
K k

1 (5:291)

MR

where n is the total number of observations minus the number
of differences taken and rye 1s thé residual autocorrelation,
and Q is the Q-statistic. The Q-statistic is compared to a
chi-squared distribution with (K-p-q) degrees of freedom.
If the  statistic 1s ton large at the desired confidence
level, then the model may be regarded as inadequate. (5:291-
3)

Another diagnostic tool is the cumulative periodogram

{%:294-295). This 15 a means of evaluating for periodic
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patterns that the ACF cannot readily detect. The periodo-

Jgram function isg defined as

I

I(f,) = 2/n((Z a,cos2mf )2 + (L aysin2wf )2 (471
t=1 . =1 (5:294)
where fl = i/n is the frequency. If the series 1in guestion

is random. then the periodogram takes on the appearance of a
straight line running from the coordinates (0.,0) to (0.5,0).
A sufficiently large deviation from this line is indicative
of periodicity not captured by the model.

A model passing these basic tests may be considered
adequate for the forecaster to move on to the final step:
using the model to prepare forecasts. The process of
generating forecasts is relatively straightforward. Once
the parameters and form of the forecast model are known. the
computer simply solves the equation to obtain the forecast.

Forecast Comparisons. Once forecasts were obtained

from each forecast method, they were compared with the
holdout sample from the first four months of 1989 (January
1989-April 1989). Each model was evaluated by MSE on how
well it predicted the values in the holdout sample. The
forecasts from each model were obtained four times and the
number of times the model had the lowest MSE was recorded to
indicate how successful each technique was at predicting the
values 1n the holdout sample. The first forecast used
demand data through December 1988 to forecast demands for

January through April 1989. The second forecast used demand




data through January 1989 to forecast demands for February

through April 1989 and so on. Since only seven NSNs could
be used to create ARIMA models because of the two year data
gap problem, only those seven NSNs were used to compare all
four models. The other five NSNs were not used 1in this

evaluation step.

Summary

This chapter discussed the data acquisition and manip-
ulation process. It also highlighted the methods used to
actually make forecasts from each forecasting method and how
those forecasts would be compared against the holdout sam-—
ple. The next chapter continues with the results of the
forecasts and how each model fared in predicting the holdout

sample.
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IV. Data Analysis and Results

Introduction

Thi=s chapter discusses the results of the data analvysis
and the relationships found during the study. First results
of thes seaconal tests will be discussed. Next. the exponen-—
tial smoothing models will be discussed, followed by the
ARTMA models. The relationships between the models of
similar stock numbers will alsc be discussed. This will he
followed by the results of the forecasts and the rating of
each model on 1its performance 1in predicting the holdout

data.

Seasconality Tests

Two methods of determining whether data 1s seasonal! or
not were mentioned in the previous chapter: examination of .
plots and evaluation of the autocorrelation function.

Demand Data Evaluatieon. First. data plots will be

evaluated. Recall from Chapter III that the data used to
build the exponential smoothing models 1s slightly different

from that used to build the ARIMA mcdels. because of the

problems in obtaining enough data. Since ARIMA models were
" built for only seven of the twelve items. this section on
analysis of seasonality examined the demand data used 1in
building exponential smoothing models. so that all twelve
items' demands could be evaluated. The exponential smooth-

ing demand data are blotted in Figure 10 through Figure 21.
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Attachment 5 lists the data used to create the plots. For
the sake of completeness, the demand data used in the Box-
Jenkins methodology to generate the ARIMA models are listed
1in Attachment 6 with the associated graphs i1n Attachment 7.
Examination of the demands used to build the exponen-—
ti1al smoothing models reveals some consistency 1n which
months had the highest demands. Table IV summarizes which
months had the high demands for each item. The months oI

ptember., October and February had the largest numbhevr of

143

high demands. February 1987 had the most high item demands:
NSN's 4. 11. and 12 had their highest demands in that month.
Three months had the highest de@ands for two 1tems: Septem—
ber 1986 had more demands than the other months for N3SNe |
and 9; February 19838 had more demands than the other months
for NSNes 5 and 7: October 1988 had meore demands than the
other months for NSN's 2 and 109. Three other months had the
highest demands for the final three items: demand for N&N 6
peaked in October 1987. demand for NSN 3 peaked in November
1987. and demand for NSN 8 peaked in January 1989. (Di1s-
counting that value as a holdout value would move the peak
demand for NSN 8 to November 1987.) In short, the fall and
winter months experienced a much greater demand tor these
items.

The following discugsion examines the demand patterns
ot each NSN. As was noted 1n Chapter II1, plotted seasonal
data has similar shaped demand curves from ye=ar tn year and

1s consistent 1n 1ncreasing and decreasing from year to
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Table IV. NSN Versus Periocd of Highest Demands
L ]

NSN NOMENCLATURE PERIOD OF PEAK DEMANDS
HIGHEST 2ND HIGHEST

N3N1 BOOT. MUKLUK LARGE SEFP 86 FEB 88

NSNZ PARKA,ECW GRN X~3SMA OCT B8 FER 87

NSN3 SOCKS .MENS /W NALO NOV 87 OCT 87

NSN4 COAT MANS SML-SHOR FEB 87 JAN 87

NSNS COAT MAN MED SHT FEB 87 NOV 87

NSN6 SOCKS.MENS /W NAl4 nCT 87 SEP 88 :
NSN7 COAT MAN MED L& 53 FEB 88 JAN 88 ZEP =no
NSN8 UNDERSHIRT EX WEA L JAN 89 NOV 87

NSN9 GLOVE SHELLS. CW 322 SEP &6 OCT 88

NSN10 SOCKS .MEN. CW.NAUTR9 OCT 88 NOV 87

NSN11 BOOT MUKLUK MANS SM FEB 87 OCT 87 OCT 88
NSNLlZ BOOT MUKLUEK MED FEB 87 FEB 88

L]
yvear. An overtay of a nlot of data from one year to theb
next wonld show little or congistant change.

NSN 1 had 1ts peak demand of 55 1n Septe@ber 1986.
followed by the second highest demand of 47 in February
1988. The next highest demands of 39 and 37 were 1n January
and February 1987, respectively. followad by the 5th highest
demand of 32 in October 1987. This pattern of dual peak
demands continued in 1988 and L9839 with the highest demands
(only 27 and 10, respectively) again in September and Febru-
ary. The lowest demands of 0 were in June and July of both
1987 and 1943, and March and April of 1988. However. 1n
1987 over 30 items were demanded in March and April. Thus
NSN 1 had a fairly well-established pattern of dual peak
demands with few demands in June and July.

NSN 2 has a similar demand pattern. but with a smaller

number of demands. with the peak demand of 9 in Qctaber




1988, followed by the 2nd highest monthly demand of 8 in
February 1987. During the three months of October 1987, and
March and April 1988. the monthly demands were 6. As with
NSN 1. however there were relative peak demands of 3 in

November 1987 and March 1988, followed by an Qctober 198&

9,

peak. With such low peak demands. no real pattern of low
demaﬁds conld be found. S, the pattern of dual neaks,
several months apart. 15 also evident in NSN 2's demands.
NSN 3 has a mare variable demand pattern. The highecst
demand of 333 occurred 1n November 1987, with the second
highest demand of 325 occurring in October 1987. The third
arnd fitth highest 4d2mands of 236 and 154. respectively. also
2ccurred in consecutive months: September and October of

1988. To continue the pattern. the fourth and sixth high

D

demands were also in consecutive months., with 211 demanded
in February 1987, and 1353 demanded in January. The varia-
tion in pattern primarily occurred in late 1986, with rel-
atively high demands ror four conzecutive months. This
plateau in demand 1s unmatched in other years. Low demands,
those in the single digits. were consistently in the months
of June and July. In all three years. then. demands were
high 1n October and November., but in 1986 and early 1987,
the peak demands for the vear were spread out and the high--
est peak demands delayed.

For NSN 4, the demands followed decreasing pattern over
the vears. The winter (defined as the period ot peak de-

mands ~~curring roughly froem September ~f crne vaear throoah
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March of the following year:! of 1986 and 1987 had over £5%
~f the demands for the period. All of the highest demands
for the 1tem occurred between September 1986 and April 1987,
with the highest demand ntf 44 1in February 1987. The next

rwoe hignest demands wers 1oy 36 1rtems in Januarvy 1977 and

o

o]

2 1ftems 1n Deczmber 1935, Zeptember 1926 had the nest

m

highest demand at 0. while November 19266, and Mar~h and
April 1987 had 22 demands each. This pleck -f higher de-
mands was gomewhat repeated a year later with the haroh
demand tor the vear ~f 18 again occurring in February 1932
For the winter otf 1958-1989. however, the pattern was not
repeated. The peak demands of !3 coccurred 1n September and

Dctober, and demands declined fairly steadily after that

t+

W

L]

point. Again., low demands were very consisten Curyin:
in the months of May., JTune. and Tuly. althourgh November
1988, and March ard April 1989 alse had demands of o=ly 1.

Thug. for NSN 4. declining demands followed a pattern of

nlateauing for the winter months for two of the thre

1]

V4

i
s
)
¢

MSN 5's demands follow semewhat a combinatian of the
pattern of N3Ns 1 and 2. The peak demand of 139 occurred in
February 1988, with the second hiahest peak demand ot LG7 1n
November 1987. Much laower demands of 58 in February [937
and 38 1in January 1987 are the third and fourth highest
demands of the previous winter periaod. The fifth highest

demand »f 31 occonrred in both September and Qctober 1926

Lew Aemands for NSN 5 were somewhat consistent.  Thew o

curred from May thr-nigh September 1n 1987 and March throuah

el




August in 1988. although other months, such as February and
April 1989 also had low demands. So. again, there is a
rattern of high demands in the fall. a drop in demands
throv 'h December and Jaruary. followed by é high demand in
February as in NSNs 1 and 2's demands. Thig pattern ends in
the r"nal winter of demand data with two relative pealk
demand= of 10 and 13 in September and November 1988 reepcc-

tively. but with no follow-on peak demand in February. As.

in the case of NSNg 1 ard 4, the demands almost establizhed
a pattarn for the first fwo years which changed for the
wiser of 1988-1989.

NS 6 followed even less of a pattern. The peak demand
of 93 was in October 1987. while the second highest demand
of 57 was 1n September '988. The third highest demand «f¢ 29

ocourred 1n December 1963, while the fourth highest demand

S

ot 21 was in February 1987, The fifth highest demand wac
in. November 1987. In th2 winter of 1986-1987 the peak
demnand was in February. The following winter (1987-19813)
th> peak demands were ir consecutive months, October and
Nowvember. The final wirter the peak demands were split into
th+ two months ot Septerper and December. The low demandsz
are alse 1ncongistent.. In 1987, they extend from April
through Septomber. whilo in 1988 they extend from December
{987y thronah July., 3 there iz a less clear pattern +o
the demands »f MSN 6.

MEN 7 als failed £t show a ~lear demand pattern. The

peaxk de and f 90 occuryed in Fobruary 1988, The gecond
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highest demands of 30 crccurred during January 1988 and

Septembor 1986, The fourth highest demands of 18 occurred

4nlt

o e o i,

in Decenber 1980, and January and February 1987. The next

.
Righest dzmand (zaventh) occurred in September 19588, A

4 :
faimod. ear, pattern might be glesaned from these demand data

1f the roghest p=alk o0 over 20 were not o high.,  Pead:

Aemznds coourrved fwice in Septem

."‘.F‘

et , and twice in Januvary

and Fepruary. The low demands are re

T
—
2

.
N
-
~
H
—
~
N
3
X
-
2
t
o
r

runcing fron Maroh throuagh September in 1937 and Mareb

througrn Ausust in 198320 In conclusian, there is nobt much of

~}

a wizual pattern to the NSN demands.

NSN 2 hmad by far the Tighest demand rate of any o0 the

WEN' = srodiad, but little pattern. The monthly demeands

vanga2d | cem 2 to BT thes highest demand oocourring 1o Janer -
ary LeEC The sezond higb=gst demand of 290 fe11 i Newvewher

LAgT, wra e the third highest damand of 502 occcurred n
December 1989, Octaober 1982 had the fourth highest denmand

nf 412 ard February 1987 had the fift

jo

highest demand of
397, The lowsest monthly demands were fairly consigtent. o--
ciring 3o May and Jone of 1987 and June and July of 1933,
Otrer than this., no obvious pattern reveals itself in the
dars,  The winter L286-1987 demand data consists of a mamber
mf velatively hiah demands from September te March., the two
Mirnhest cocurring in Ssptamber and Februaary., The fa)lowing
vinter s demand data 10 charactericed by a larqé p@ak'in
Nessomber amidat a sav-tacth pattern with ralativeis jarge

demands a0 August . Octaber, Jangary., and March. The winter

B¢




of 1988 and 1989 is still different with two large peaks.
one centered around (ctober., the cother centered around
January. S0, in no two years are the peak demands in the
same months. nor are the patferns of demand similar in any
~f the thves winters

For N3N 9, the de2mand pattern 1z more apparent. Th=
peak demand nf 92 occurred in September 1986, The second
highest demand of 72 cccurred in October 1988, while the
third highest demand ~f %6 «accurred in September of the same
vear. The fourth highest demand of 52 followed 1n January
1989, while the fifth highest demand of 27 took place in
January 1987. The lowest demands were not consistent. In
1987 the lowest demands occurred only in June. July. and
August (and November). while in 1988 February through Augqust
had 1ow, demands. Smaller. but relatively high demanrndz aleo
securred in Decamber of 1987 and January <f 198% along with
smaller vet relatively high demands in September and OQOctaber
of 1987. The pattern is fairly evident although not consis-
tent in magnitude. since the winter 1987-1988 peaks are =c
low. For NSN 9. the high demands occur in January fairly
consistently. with another peak in demands in September or
QOctober or both September and Octaber.

The NSN 1Q demand pattern is similar to tha%t «of N3N 9,
The highest demand of 257 occurred during Qctober LA8R,
while the second highest demand of 205 occurred in Naovember
1987. The third. fourth and fifth highest demands ~f 129,

107 and 105 respectively occurred in February 1987,
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September 1986, and January 1987. The lowest demands oc-
curred in May through September 1987 (with the exception of

a higher August value), while occurring from only April

through July of 1929, The high demands were mcre consis-
tenr. ccocourrying in Octobesy and November. and Lo a lesser

extent 1in January or February. Each winter period. espe-
~iallvy 19R6-1987 and 1988-1989, had at least a doubls pealk
demand. The winter 1987-1988 demands showed a pattern of

one central peak damanl in November, a lesser one in Aagquot

f)

and ther lesser nne in March.

Q
3
s

¢

The demand data f-r N3N 11 has a less clear-cut pat-
*2rn. The highest demand of 37 tock place in February 1909
The next highest demand of 30 occurred in both Octaber 1987
and QOctober 1988. The fourth highest demand of 28 accurred
in May 168%. while the fifth highest demand cof 27 ocourrad
in September 1928, The low demands for 1987 tock placs
April through September. but in the faollawing year occourred
during February through Auqust. with the previnusly men-
tinned exception of May 1988. The winter 1986-1987 demand
data hawve dual! peaks. <ne in September. the other in Fehru-
ary. The next winter, dual peak demands occurred. one 1n
Ortober, the second in Januarv. These were tallowed by an
unusual peak in May ~f 1988. which was subsequently followed
by still two more reaks in Jeptember and Octcber and a minor
one 1n January 1989. Exrcepting the May peak. September.
Qctober, and January tended to have peak demands. but there

is nn apparent consistency to their relative heights because

34




of the changes in which months had the greatest demands from
yvear Lo year.

NSM 12 has a similar demand pattern. The highest

monthly demand of 79 tock place in February 1987. The next
highest demand of 6% occurred in February 1988, follawed by

the third highest demand of 66 in September 19084, The

fourth highest demand of 65 accurred in October 1988 and the

h

1fth highest demand of %3 occurred in January 1987, e
low demands ~ccurred April threough September in 19287 (with
August an exception! and -in April through August in 198%.
Again the pattern <f dual weaks accourring inconsistently
throughout the year is evident. one peak occurs 1n Sertem-

ber or October followed by an<ther 1n Januarvy cr Februarw.

but there is no consistency to the relative heights of the

1

peaks for given months from vear o year,
General Demand Patterns. The most strisriog aopeot

of the plots are the péaks which generally occur in the fall
and winter months, fnllowed by low demands in the spring znd
summer months. A pattefn, although scometimes slight. ewists
in the demands of N3Ns 1, 2, 3, 5, &, 10, 11, and l2. {Note
that these are the same N3Ns. with the addition of NSEN 2.

that showed enough of a consistent pattern to "pass' the

10U}

Wilcoven S1gned Rank Test.) The pattern consists of high
Aemand ~haracterized by a peak during one or mcre ~f the
monthe September throuah November., follewed by 10w demands
in December and ancther peak 1n Januarv. February. -r Marach.

NEN 4's demands had a pattern <f plateaus 1nstead of peaks
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during the months December through February. The other

NSNs. 6. 7. and 8 had little or no obvious pattern.
Several poszible reasons exist for the demand data

diffarirng from vear fto vear. First. organizations ftend to

v cold weather gear in large quantities -nly a faw rimas -

v&ay, so year to vezr changes in when large organizaticns
nought winter gear could easily change monthly demands from
year to vear. Second. the supply personnel could change the
month of peak demands from year to the next by changing whear
they ask organizations to request winter cear. and by or-er -
ing differing gquantitiss according to what the responze 12,

A trird pessibility is that changing budgets could cance

changes 1n how the ~arganizations choose the spend thear
money .  Years with low demands acrass the spectrum of ~nld
vaather adear could mean restrictions on whoe was anthrrized

sess an ittem and hoew many of oA riven 1tem o an trga

)

> opa

€1

3
sl

-1
1

tion could procure. or a larde decrease 1n the manning f
the organization. A different pozzibility 1s that miid
weather one yeér could affect demands both that vear and the
nevt. Fewer items will be used during a mild winter and
those that are used will be used less frequently so replace-

ments would be fewer the followling year. Ancther paoscibl-

cauce for changing demand 1is replacement c¢f th= item by

»
3
f
e

Al

"her. elther hecaunse it falls cut of faver., or bhecanse 1+

b}

15 simply replarced b anather NSN. This. however . iz 1in-
likely for the 1tems considered here. Zti1ll ancther pe--

s1bility 13 that the evtremely !laow demand rates of some
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items ijust d¢ not provide sufficient data o make an under-
lying demand rattern visible.

srouped Item Demand Evaluation. In addition to

the individual items. three different sets of arocuped. like,

y2 o ovaluated, Three 31zes 23ach of muklals, -2 3

item

mn

(%

Ny

weather sccks. and coats were among the items selected fov
analysis.

The mukluk demands. <cold weather snck demands. and ~nat
demands are presented in Figure =23. Figures 24. and

Figure 22. respectively. An examination of the demand

Rl
i
T

terns for like items showed some simllarities and some
differences. The mukluks (NSNs 1. 11, and l2) were repre -
sented by the same basic demand pattern of two or thrse
peaks of var?ing height over each winter's heavy demand
period.

The sccks' (NENs 3, 5., and !0) demand patterns were
more similar over the three winter period. The first winter
had a plateau shaped demand pattern followed by a single
large peak the next winter..and finally a single peak the
third winter followed by relatively level demands or a
zingle additional ne2ak. The rccats' (NSNs 4. 5. and 7)
demand patterns were less similar. NSNs 5 and 7 had bags: -
cally the same demand pattern with plateaus and p=ak
switched during the first winter., and two peakz 1n the
s3econd winter's demand of NZN S versus only one for NSN 7.
However, NSN 4 followed an slightly different demand patt=in

with no peak demand during the second winter. S, for each
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of the three groups, although some similarities could be
found in the demand patterns of like items, the similarities
were limited.

Autocorrelation Function Evaluation. The limited

similarities in the demand patterns of like items are alsc
evident 1n the ACFs of the items' demand data shown in
Attachment 7. As an example, the ACF of NSN 1 is displayed
1n Figure 25. The calculated ACFs are presented 1n a bar
rormat, while the upper and lower bounds of significance faor
the ACFs at each lag are presented as lines. These si1g-
nificance bounds are set according to the rule that for the
first three lags an autccorrelation greater than one-halfr
the standard error 1s significant, for the next three lags
an autocorrelation greater than the standard error 1is sig-
nificant. for lags 7-12 an autocorrelation greater than
twice the standard error i1s significant. and for higher
numbered lags an autocorrelation greater than three times
the standard error 1is significant (7).

None of the NSNs had a strong enough seagsonal demand
pattern to generate a statistically sagnificant seasonal
ACF. although some were close to being significant. For
example, NENs 35 and 8 had relatively strong autocorrela-
tions at lag 12, but in both cases they were not statistai-
cally significant. Interestingly, N3Ns 10 and 12 had high
autocorrelations at the 11th lag. This implies a demand
pattern shifting from <ne month to the next each year.

Finally, NON 2 had a demand pattern with a relatively
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significant 5th and 6th lag. leading to the conclusion that
demands were on a six month cycle instead of the expected 12
month cycle.

The net results of the seasonal tests were that the
demand data are not strongly seasonal. Although the demand
data appeared superficially seasonal. closer dnalysis showed
the demand data generally do have some seasconal patterns.
although they are not wvery strong. The evaluation of the
ACFs gave similar results. None of the demand data had a
strang seasonal pattern. Having examined the seasonality ~f
the items, the performance of the forecast models will be

discussed next.

Exponential Smoothing Models

Two types of exponential smoothing models had their

forecasting abilities tested. The first was simple

exponential smoothing [14]. The second was Winters' cea-
sonal exponential smoothing {211, [22). [23}. and [(24}. For

each item a value for the parameters (o for simple exponen-
tial smoothing: and a. B8, and T" for seasonal smoothing) were
generated. These values are listed 1n Table V.

A further analysis was performed on the three groups of
like 1tems to determine 1f any relationships could be found
hetwesen the exponential smoothing mcdels for each i1tem 1n
each grenp.  To determine 1f the parameters for the exponen-—
ti1al smoothing models were the game for the diferent =si1zes

within each group a one sample t-test was pertormed on the
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Table V. Exponential Smoothing Parameters
L ]

EXPONENTIAL 5SMOOTHING PARAMETERS

SINGLE WINTERS®
NSN o sy B T
1 L0548 050 .046 ) .33z
2 .044 . 228 .028 .410
a2 .018 .030 .030 . 244
4 .684 .073 .061 . 391
5 .038 .038 . 000 .251
£ .054 . 040 . 055 075
7 .035 .035 .026 L2777
8 .076 .061 .050 .229
9 .004 .000 .033 .266
10 . 044 .027 .03 167
11 .031 .012 .013 271
12 . 848 .062 .020 . 367

zimple exponential smoothing parameter, while a one way

analysis of vartiance (AQOV) was performed on the three

U]

prarameter values for the seasonal model. The results of

%

those tegts are 1n Table VT,

For the mukluks the 1.14 t-test value for the simple
exponential smoothing models 1ndicates that the three simple
exponential smroothing models are not statistically dif-
ferent. The large F value of 75.%55, however. leads to the

conclusion that the Winters' seasonal exponential smoothiing
models for the three mukluk sizes are i1ndeed difrerent.

For the socks. (N3Ns 3. &£, and 10). the results are
different.. The swunple exponential smoothing models are
statistically di1frerent at the 95% confidence level. The

Winters' =seasonal evponential smoothing models. however, are

statisticaltly ditferent at a 99% contidence level.
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Table VI. T-test and AOV Results for Exponential Smoothing
Models

GROUP NSNs EXPONENTIAL SMOOTHING
SIMPLE WINTERS'
T-VALUE F-VALUE
MUKLUKS 1.11.12 1.14 75.55
30CKS 3.6.10 3.60 6.43
COATS 4,5.,7 1.17 31.11

In the case of the coats. their simple exponential
models are not statistically different at a 95% confidence
level. However, one could be confident in saying the three
items couid not be represented by a single Winters' season-
al exponential smoothing model at the 95% confidence level.

Given the above information. then, a base could chocse
.to use a single simple exponential smoothing model to fore-
cast demands for mukluks. another model for coats, but would
need three models for socks. Since the sample is so small.
one cannot tell if this would hold true for all groups of
similar but different sized items. It must be noted that
the accuracy of these models has not yet been evaluated.

In the case of Winters' seasonal exponential smoothing.
one model could not be considered appropriate for the dif-
ferent sizes of mukluks, socks, and coats. It 1s reasonable
that one Winters' seasonal exponential smoothing model 1is
less likely to work for more than one item since there are

three parameters to match, not just one.
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The net result of the exponential model analysis is
that. based on the limited sample used, one simple exponen-
t1al smoothing model may be used, in some cases. to forecast

d1

+

ferent =si1zes <2f =imilar items. but not one Winters'
geagonal expaorential smoothing model. For each NSN a sep-
arate Winters' =seasonal exponential smoothing model was
required. One possible reason 1s that with the difrerence

1n demand patterns between similar 1tems identified earlier.

the more sensitive Wintpés’ models followed demands for each

T

1tem so closely they could not reasonably model! cother items!
Jemands.

Next. ARIMA models will be considered to observe how
they model the demands for seven of the sample items. Each
ARIMA model will be compared with the forecasts generated by

the simple and Winters' seasonal exponential smocthing

models.

ARIMA Mcdels

Only seven items were forecast using ARIMA models
because of the break in the data for the period 1984 through
the end of 1986. Table VII contains a summary <f the models
nbtained through the Bax-Jenkins methodeology. while Attach-
ment 8 lists the diagnostic outputs from the computer.
Recall, AR ard MA stand for autoregressive and moving aver-
age rezpectively., while RDIF stands for regular differenced.
N> twelve pericd seasonal parameters were necessary to model

the data, nor was any seasonal differencing necessary. with




Table VII. Box=Jenkins Methodology Models
. ____________________________________________________]

PARAMETER TYPE AND VALUE
NSN 1 AR 1 ~0.53133
(A) AR 2 -0.36419
RDIF 1

NSN 2 N/A

NSN 3 MA 1 -0.28883

(B) MEAN 104.38

NSN 4 N/A

(<)

NSN 5 AR 3 0).62381

() AR 6 -0.47797
MA 1 0.42724-
MA 2 0.26339
RDIF 1

NSN 6 N/A

(B)

NSN 7 N/A

(C)

N3N 8 N/A

NSN 9 AR 1 0.38984
AR 3 0.26171
MA 2 0.24589
MEAN 20.036
NSN 10 MA 1 0.65234
(B) MA 2 0.41991
RDIF 1
NSN 11 MA 3 0.27372
(A) MA 6 0.21114
MEAN 8.1945
NSN 12 AR 3 0.16814
(A) AR 6 -0.34273
MEAN 26.19
(A) = MUKLUKS (B) = SOCK3 (C) = COATS
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the exception of a seasconal parameter at lag 6 for NSN 5.
This means that the gseasonality of the data was less import-—
ant in modeling the data than other factors. Table VIII

lists the models in their mathematical! notation.

As 1n the case of the evponential smoothing models an
attempt was made f£to find similar models between like items

This failed. The demand patterns of like items were not

similar enough. The models for mukluk demand data include

el

differenced autcregressive 1 and 2, and twoe models with
terms at 3 and 6 periods, the first in moving averages. the
second in autoregressive terms. The sock demand data mcdels
are less different in that both include moving average
terms. although one has only a =ingle moving average term
and 13 undifferenced and the other has two moving average
terms and required differencing. Only one model for coat
demand data was generated. so no comparisons between coat
models could be made.

Because of the 1ncreased complexity of the ARIMA
models. the models are less likely (as was seen in the case
of exponential smoothing) to be transferable from ones i1tem
to another in spite of similar demands. The more closely
the demand history is fitted by the equations, the less
likely that equation will be adequate or even useable on
Another item. as was seen with the exponential smoothing

models.
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Table VIII. Mathematical Notation for Box-Jenkins Models
- ]

NSN 1 (1-¢,B - 6,8°) (1-B)Y, = e,
Y, = .469Y,_; - .167 Y, _, + .364 Y, o + &
N3N 3 Yt = (l—BlB)et + 1
Yt = ey - .289et + 104.38
NAN 5 [(1-34B° - 6.B%)(1-B)1Y, = e, (1-8,B -0,B,)
Y, = Y,_, - .624Y,_5 - .624Y,_, + .478Y,
- .478Yt_7 e, - .42'7-et_1 + .26Bet_2

NSN 9 ((1-,B - ¢3B3)]Yt = e, (1-8,B,) + u
= 4] 51
Y, = .320Y,_, + .261Y

+ 20.04

t-3 t ey ot .2460t_ﬁ

-

Yt = Yt—l te, - .GSZet_l - .420et_2
NSN 11 Y, = e, (1-83B° - ©.B.) + u

Yy = e, -~ 274et_3 - 21let—6 + 8.19
NSN 12 ((1-¢,B - 6.B%)1Y, = e, + u

Y, = (168Y, 5 - .343Y,  + e +u
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Forecasts

The forecasts from the variocus forecasting techniques
are presented in Attachments 9, 10, 11. and 12 for December
data, January data. February data and March data resgpective-—
ly. The December data was uced to forecast demands
tor January through April. the Janunary data was used tao
forercast demands for Fehruary through April. and sa on.A
Neote that by their very nature. the simple exponential
smoothing and SBSS methods make a single forecast which 1=
projected forward for all menths. The Winterz® and ARIMA
models. however, projlect forward different monthly forecasts
due the *their explicit consideration of seasonality. A+-
tachment 14 contains graphs «f the forecasts plotted against

2ach other and the holdeut sample.

Model Analysis

The different models. simple exponential smocothing.
Winters' seasonal =xponential smccothing, ARIMA, and 32BIZ,
were evaluated. as was mentinoned in Chapter III. by how many
times each model had the lowest MSE. In other words. for
each NSN, the number of times each madel outperformed the

others tor each of the four forecast pericds (December.

e,

January. February. and March} was determined. The numher n
times each mondel had the best (lowest) M3SE iz recaorded in
Table IX. The MSE values used to determine the values in
Tahle IX are listed in Table X through Table XIII. Rercall

that only seven 1tems had demand data which could be used to
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Table IX. Number of times each model was "best”
]

EXPONENTIAL SMOOTHING

SIMPLE WINTERS' BOX—JENKINS SE3S
N3N | 0 2 1 !
NSN 3 0 4 0 )
NSN 5 0 0 4 0
NSN 9 1 2 0 1
NSN 10 0 4 0 0
NSN 11 0 1 2 1
NSN 12 ] 0 2 2

 —  ———— ——————————————— 4

TOTALS 1

s
w
O
n

make ARIMA models. so NSNs 2. 4. 6. 7., and € are not con-
zi1dered 1n this analysis.

Winters' seasonal exponential smoothing 13 clearly the
hest farecast metﬁod using this criterion, having the lowect

MSE in 13 of 28 forecasts. ARIMA models were the c2rond

Table X. Model MSE's for December Ferecast
. - ]

MSE FOR THE VARIOUS MCDELS
DEC FORECAST
EXPONENTIAL SMOOTHING

BOX
JENKINS WINTERS" SIMPLE SBS3
NSN 1 23.38 48.93 23.4¢9 22,26
NEN 3 2880 .88 195.40C 1653.97 3725.54%
NSN % 13.96 R40.41 294 39 276.70
NSN 9 270.41 268.139 431 .60 430.79
N3N 10 4105.97 480.753 831.73 1108.13
NEN L1 16.23 32.51 22.04 14.13
N3N 12 198 81 173.78 97 .04 16 .A3
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Table

XI.

Mndel MSE's for January Forecast

MSE FOR THE VARIOUS MODELS

JAN FORECAST
EXPONENTIAL SMOOTHING

BOX

JENKINS WINTERS" SIMPLE 3E32

NSN 1 7.67 29.66 15.88 18 37

N3N 3 2538 .07 341.71 2257.1¢% 4224 .93

NSN % 14.04 1248 .65 306 .24 275,24

NSN 2 367 .33 244 .0n 1527 .47 oo 3d

N3N 10 5339.82 1040.61 1247 .37 1411 %3
NSN 11 7.58 49.350 38.00 17.36
N3N 12 150.64 234 .36 58.46 58.7343

Table XII.

Model M3E's for February Forecast

MSE FOR THE VARIOUS MODELS

FEB FORECAST
EXPONENTIAL SMOOTHING

BOX

JENKINS WINTERS" SIMPLE SBSC

NSN 1 5.50 4.19 28.80 33.87

NSN 3 4171.21 32 .14 2485.59 6045 . 36

NSN 5 13.68 82.85 276 .81 294.94

NSN 9 377 .85 46 .03 111.34 201,23

NSN 10 ©127.95 604.16 1178.10 1897 .49
NSN 11 5.66 17.20 22.81 16.87
N3N 12 81.47 87.87 92.90 81 .88

Table XIII.

Model MSE's

for March Forecast

MSE FOR THE VARIOQUSZ MOQDELS

MAR FORECAST

EXPONENTIAL SMOQOTHING
BOX

JENKINS WINTERS' SIMPLE 2BS5SS

NSN 1 11.83 0.86 46 .24 10.54

NSN 3 4399 .67 60.06 3058.09 3747 .74

NSN S 0.00 29.38 237.16 278 .39

NSN 9 501.31 5.38 4.97 192.18

N3N 10 4019 .62 340.40 1431.11 1268 .53
NSN 11 8.39 7.95 16.73 20.68
N3N 12 0.37 54.76 259.53 88,05




best at forecasting with the lowest MSE in 9 cases. SBSS
had the “hest” M3ZE S times and simple exponential smoothing

had the "best” MSE 1 time.

It zhoald ke notad that in a number <f cases the dif-
Jrrences bertwesn MIEz [or different models were siight.  For

evample, for the December forecasts of NZN | SBSEZ had the

lowest M3E &+ 22,37 ARIMA was next best with 272,28,

s

I

1imp 1
swponential smoothing was thirdl hest at 23.49, and Winters'®
seasonal expon=aptial smoothing had the worst forecast with

an MSE ~f 48.93. The first three models had a spread of

]

o+

~nly 1.13, roughly 5% of the lowest value., 22.36. This
shows that 1n some cages several medels had very similar
performances.

Severa! ~omments abentt the forecasts for fhe SB35 and
s.:mple evponential smoothing medels are 1n order.  The ZEIS
was the best model only for forecaste from December and
January when demands were higher and closer f£:» the mean »f
all the demands and more pericds were being forecast. The

simpler mcdels performed better wh

b
@

n they could forecast

close to the mean of the entire series. Alsa, simple =u-

Ui

ponential smoothing had nearly the same forecasts as the
SB35 method in many. Aalthough not all cases (N3N 9 is a qgaond
example of the latter case). This 1s consistent with the
notion that brth the SB35 and simple exponential smcothing
are =zimply modified moving averages.

Tonsidering the difficulty with which ARIMA models are

made, the methodology performed relatively poorly. In only
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3 of 28 forecasts was 1t the best method. In comparison,

0]

the simplest models (SBSS and simple exponential smoothing)
were "best” on 6 of the 28 forecasts.

Qf the 9 forecasts in which ARIMA models excelled. four
were the forecasts for NEN 5. This model, with AR 2 and o
terms. MA | and 2 terms. and a regular differencing ferm.
was one of the most complex developed in this study. In
contrast. the =zimplest ARIMA model. an MA 1 developed for
NSN 3. was worase than the Winters' model 1 all four fare-
casts for that NZN. Winters' seasonal exponentilal smoecthing

madels alss generated the best faorecasts all four timez for

NSN 190, and again. the ARIMA model was relatively simple., an

MA 1 and 2. In contrast. for N3N 9. Winters' was the best
in two forecastas, 35BSS and simple exponential smoosthing were

each best once. and ARIMA was never the best madel. 1n sSpit-=
~f having twe AR terms and one MA term. For NSNs 11 and L&
the ARIMA mcdel was the best model in two of the forecasts.
Winters' and 3B35 were each bezst for one forecast of NSN 11,
while SB35 was best for two faorecasts of NSN 12. Finally.
for NSN 1. Winters' was the best model 1n two forecasts,

while ARIMA was hest once and SBSSE was best once. Far these

47

laz*® 3 NSNs. the ARIMA models had either two MA or two AR
terms. So. 1t appears that the more complex ARIMA models
better farecast the hold-ocut data.

Several oJbservations may be made concerning the rela-
tive performance of the mndels. First., several of the M3Fe

were quite close, such as the December forecast for NSN I].
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So. ARIMA d4i1d not perform as poorly as it might appear at
first glance. Second. when ARIMA was well-fitted. as it
apparently was in the case of NSN 5. the MSE was lower by
one order of magnitude as compared to the other models. sa
when 1t was able to capture the demand data well, 1t en-
celled. Third. 1t must be remembered that the Box-Jenking
methodology works best with extensive data (60 months or
better yet, 120 months). In Chapter IIT it was noted that
the models were built with a bare minimum of data, which was
artificially made continuocus from two separate groups of
data. Fourth. the exponential smoothing mcdels used a
slightly different set of data which was continucus. This
too may have affected the results. Fifth., the demand pat-
terns were not clearly seasonal. and with possible man-—

agement 1nfluences changing demands from year fto y=

Q

r,. any
model may have difficulty generating reascnably accurate
forecasts.

Considering these factors, it 1

0

not surprising that
the results were mived. One fact 15 clear. however,
Winters' and ARIMA models 4o a better 10h of forecasting
demande that follow somewhat a seas~nal demand pattern than
do the SBSS and simple exponential smoothing medels which
tend to best forecast slowly changing constant levels of

demand.
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Conclusions

This chapter discussed the analysis of the data for
seasonality and the results of the model building. The
models were introduced, along with an analysis of whether or
not like 1tems hed samilar parameters in the simple and
ceasonal exponential models. Additionally the forecast:s
generated by the mcdels were presented. along with an 2nalw-
513 of how each technique performed compared to the others.

The seasonality tests gave mixed results. fAGraphically.
NSNs 1. 2., 3, 5. 9. 10. 11, and 12 showed some consistency
of pattern with dual peak demands each year. while N3N 4
showed a plateau shaped high demand period. NSNs 6. 7, and
2 showed no discernable demand pattern.

The exponential smoothing models were evaluated to

4]

determine 1f one model could he used to forecast several
like items. One could use a single simple exponsntial
smoothing model to generate forecasts for the three sizes of
mukluks and anocther model to generate forecasts for the
three sizes of coats. In no cases could a single Winters'
seascnal exponential smoothing model be used to forecast
demands for different sizes of the same type item.

The evaluation of which maodel best forecast the hold-
out data was also presented. Winters' seascnal exponential
zmoothing proved better than the ARIMA mcdels. However,
based on the small sampie size, the data difficulties., and

the closeness of the results this is certainly not a

>

definitive conclusion.




V. Conclusions and Recommendations

Introduction

This ~hapter discusses hiw the resultgs answey the

recearch gquestions and pregents some possikble recommenda -
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tions fao urther study and action. Briefly.

3

[

determined that Winters' seasonal exponential smoothing an
ARIMA models forecast demands for the sample i1tems better
than the SBS3 method cf forecasting demands. Additionally,
1t was found that the Winters' seasonal exponential smooth:

ing models gave better results than the ARIMA models.

Responses *o Research Questicns

Research Question !. How dees the SB35 currently ad-

dress consumable seasonal demand items? The SB35 daes nat
distinguish between 1tems with seasonal demand patterns and
*hose without. Rather. it uses a mcdified simple expaonen-
tial smonthing technique to calculate future demands for zll
consumable items. Since simple evponential smaothing tech-
niques tend to lag changing trends in demand and <ffer
varyilng degrees of responsiveness to seasconal demand pat-

terns they are not the best suited for seasonal demand

0n

pattern

o]
l‘b
)]

earch Question 2. What are alternative methods of

addressing consumable seasonal demand items in the SBS3?
Twno primary alternative methods of addressing consumable

seasonal demand items in the 3B55 were studied: Winters:
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seaszonal exponential smoothing models and the ARIMA models.
Both forercast techniques are known for theilr ability to

capture patterns missed by simpler moving average and simpie

=xponenti1al smoothing technigues. However, an argument for
~he uze of 21nher seascnal forecast medel in the SBZS would .

1
' D
.‘f
oy
m

e tempered by added complemity < seasonal model
with 1%z agssoclated data staorage requirements.

Fesearch Question 3. Do i1tems currently 1dentified as

seasona. by personnel at the base-—-level actually dispiay

S5ea

9]

conal tendencies? Two responses to this questison can he
made depending on the criteria used to answer 1t. A grarhi-
cal analysis showed the i1tems identified as seascnal by

hage~level personnel have some. although not strong. season-

(u

al demand characteristics. All twelve stock numbers st
had definitely laower summer demands comparsed to winter
demands. However., the timing of peak annual demands and

demand curve sh

o}

pes differed from orne year to ancther,
Depending ~n the 1tem. peak demand might occur in January
one veay, followed by relatively steady. relatively high de-
mands. The following year. possibly because of weather.
differing management policies, or =ome other reason., the
peak demand might be one month later. with few demands :n
the surrounding months. This weakens thg argument that
demands are truly seasonal.

The «ther tachnique determining Lthe presence of season-
ality was to use the autocorrelation function and determine

:f an 1tem’s monthly demands from twelve months apart were
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correlated. The results of this test were essentially
negative. Although. as was mentioned in Chapter 4. some of
the items were close to having significant correlations
between demands one year apart. the demand data was not

clearly seasonal according to this test. A number ~f rea-

p—

sons can be given to account for this. Large crganizatinna
buys, management control of the items., the limited demand
history available for study, fluctuating weather, 1institu-
tional changes in requirements. low demand rates. and chang-

ing budgets all could have affected demands i1n a non-rand.om

fashion.

Research Question 4. Can demand for the items current -.

ly identified as seasonal by personnel at the base-level be
better forecast using a model that incorporates seasonal
demand pattern information. or the current SBSS madel? Evern
with 1tems that do not show strong seasonal patterns. using
forecast methods which can compensate for, or incorporate
seasona! demand pattern information. did improve the ac-—
curacy of forecasts as measured by MSE. Of 28 forecasts of
7 different N3SNs the seasonal models (Winters' and ARIMA)
had the lower MSE 22 times. In scme cases there was little
difference in the forecasts: i1n others the best mode! per-

formed much better. In light of the surprisingly pecor

@

performance ¢of the ARIMA models, and the difficulty of
analyzing the data and creating the models. Winters' was a

better mcdel choice. The Winters' seasonal

40

)

wponential
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smoothing models were the best in 13 of the 28 forecasts and
much easier to develop.

Research Questicn 9. What method could be used by per-

sonnel at the base-level t¢ identify items as seasonal and

QY e

lad
]

w

st demands for those 1tems accordingly? Given

ufficient demand data. a check of the autocorrelation

in

o]

furiction 1s relatively ecacily accomplished with a microcom-
puter program and can give consistent results. However.
given current demand data storage requirements (essentially
sne yvear at the base level) any type of analysis of season-
ality would be impossible until several (4 at an absolute
minimum) years of demand data were collected for analysis.
It would be possible tc write into the supply computer a
program that could automatically calculate the autocorrela-
ti1on function and check at the 1ith, 12th. and 13th lags for
evidence ¢f seasonality. and flag the item as seasonal.
given sufficient demand data. To manually select items for
review to determine if seasonality existed in the demand
data would be impossible given the number of items in the

average base supply account.

Recommendatinns

A number of possibilities exist for additional analysics
and study. In addition. some general recommendaticns are
made .

1. Recommend a follow-on study be accomplished with

additional historical data. This could answer many
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questions about the effect of the small data sample avail-
able and the effect of using non-sequential data in the
ARIMA models. A comparison of both models and forecasting
ability with additiconal data cculd prove informative.

2. Recommend a random sample of stock numbers, not

nreviously i1dentified as seasonal. he studied to determine

-
t+h
u

=asonal techniques would be useful 1n forecasting de-
mands and if items not flagged as seasonal exhibit seasconal
demand patterns. This would be facilitated by the develazps
ment of a Fortran computer program that would take transac-
tion history data tapes and have as a product useable month-
ly demand data and a monthly 3BSS forecast for comparison
purposes.

3. Recommend AFLMC/LGS study the feasibility of
storing demand data in a more accessible format and for a
longer duration in the SBSS. Data is much more likely to he
used when it 1s accessible. As transaction histories are
accumulated., samples of demand data fitting various c¢rit-
eria could be extracted and analyzed on microcomputer-based
programs at base-level accounts.

4. Recommend additional research be done in the area
of using Winters' exponential smoothing or another seasconal
model which could better forecast seasonal demands on con-—-
sumable items due to end-cf-year funding constraints, annual
weather effects on ailrcraft parts. and annual exercise

patterns.
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5. Recommend future studies between the relationship
of more complex ARIMA models and SBSS demand data be
evaluated to determine if one to three MA or AR term models
are less capable of forecasting demand than Winters' sea-

sonal exponential smocthing.

Lonclusions

This study. in spite of the small sample size. and
possible data problems. demonstrated that seasonal demand
items are better forecast using models which account for
seasonal demands. Although the data requirements for
creating and using seasonal models are more extensive than
for simple exponential smoothing or moving averages models.
with the current reduced costs of storing data and increaced

ccemputer capabilities, the use of seasonal models is well

n

worth further investigation. The potential cost saving

r

resulting from better forecasts of consumable items certain-

ly warrant further investigations into this area.
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NSN7
NSNS

NSNO

NSN10O
NSN11

NSN12

Attachment 1:

Items Selected for Study

STOCK NUMBER

8430002690100
8415003761661
8440001536717
8415007822935
8415007822938
8440001536721
8415007822940
8415002702014
8415002687872
8440002614897
8430002690098

8430002690099

NOMENCLATURE

BOOT, MUKLUK LARGE
PARKA.ECW GRN X-SMA
SOCKS .MENS /W NA1O
COAT MANS SML-SHCR
COAT MAN MED SHT
SOCKS,MENS C/W NAld4
COAT MAN MED LG 33
UNDERSHIRT EX WEA L
GLOVE SHELLS, CW S5Z:z
SOCKS . MEN, CW.NAUTRY
BOOT MUKLUK MANS SM

BOOT MUKLUK MED
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LIKE ITEM
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(A)

(B)

(A}




Attachment 2: Sample Data Extraction Fortran Program
and Data Tape Schema

DEFINE VARIABLES »

3y C1 2

CHARACTER*2 TTPC

CHARACTER*Z DIC ’
CHARACTER*4 DOLD.DOLT

CHARACTER*6 TRANSD,ACTQTY

CHARACTER*13 3TKNUM.SNREQ.STOCKN

CHARACTER*14 DOCNUM

CHARACTER*20 FILENM

CHARACTER*121 DUMMY

INTEGER*4 ICOUNT.OCOQUNT

SET RECORD COUNTERS

SO XP]

ICOUNT=0
OCOUNT=0

GET INPUT FILE NAME AND OPEN FILE

aaQ

5 WRITE(*.900)
900 FORMAT (' ENTER INPUT FILE NAME: ', §)
READ(*,905) FILENM
905 FORMAT(AZD)
OPEN(1l,FILE=FILENM.3TATUS="0OLD")

GET OUTPUT FILE NAME AND OPEN FILE

D RYEW]

19 WRITE(*.910)
910 FORMAT(' ENTER OUTPUT FILE NAME: '.%)
READ(*,915) FILENM
915 FORMAT (A20)

GET STOCK NUMBER FOR SEARCH

OO

WRITE(*.917)

917 FORMAT(' ENTER STOCK NUMBER: '.3%)
READ(*,918) STOCKN

918 FORMAT(A13)

SEP]

READ A RECORD

-
V2L

OPEN(2.FILE=FTLENM.STATUS="NEW") .
20 READ(1.920.END=999)3TKNUM. DUMMY .DIC.DUMMY .
€ DOCNUM, DOLD . DUMMY , TRANSD . DUMMY .
& ACTQTY,DUMMY, DOLT.DUMMY . TTPC,
& DUMMY . SNREQ
ICOUNT=ICOUNT+1
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920 FCRMAT(A13.A13.A3.A13.A14.A4.A6.A6.A9.
& A6.A8.2A4.A8.A2,A16.A13)

STOCK NUMBER SELECTION LIST

Q&N

IF(STKNUM.EQ.STOCKN) THEN
WRITE(Z2.940)STKNUM,.DIC.DOCNUM.DOLD.
& TRANEZD,ACTQTY.DOLT, TTPC.SNREQ
840 FORMAT(LX.AL3.2ZX.A3.2X.Al14.2X.A4.2X.
& Ao.2X. A6, 2X. A4 .2X A2, 1X.AL3)
OCOUNT=0COUNT+1
ENDIF

Il

GOTO 20

i

999 WRITE(Z2,950)ICOUNT.OCOUNT
95C FORMAT (' INPUT RECCRDS READ = ' .15,
& ' OUTPUT RECORDS WRITTEN = . I%)
CLOSE(1)
CLOSE(2)
STOF
END
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Data Tape Schema (27)

POS. SECTOR LA DESCRIPTION
NO. PQOS.

15 1-1%5 SN Stock Number

2 16-17 WS System Designator
1 18 AC Sran Type

3 19-21 ER ERRCD

1 22 ME Stockage Priority Code
2 23-24 PY Issue Priority

1 25 TX TEX

1 26 PM Demand Code

3 27-29 ID DIC-TRIC

2 30-31 Ul Unit-of-Issue

2 32-33 FC Fund Code

6 34-39 SA Sup-Requisitioner
3 40-42 RI Routing Identifier
14 43-56 DN Document Number

4 57-60 LD DQLD

6 61-66 EB Ending Balance

5 67-72 DT Transaction Date

6 73-78 TN Transaction Ser Nbr
3 79-81 FI FIA Trang

6 82-87 QY Action Qty

] 88-25 ¥P Extended Cost

4 96-99 LT DOLT

3 100-102 ST Status or Advice Torls
1 103 Blank

3 104-106 OP Output Terminal

1 107 FO MAT., CAT. 3508 Code
2 108-109 PE TTEC

1 110 IN Print Punch. Old TR
1 111 BJ Budget Code

14 112-1295 MF Mark-For

15 126-140 SR SN Requested
19 141-159 NM Noun

S 160-164 MC MFG's Code

1 165 RW Reason-Why-Code

7 166-172 Blank

i 173 RC Reporting Code

1 174 IX LEX
19 175-1973 Blank
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DATE
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
JAN
FEB
MAR
AFR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DE”

Attachment

3

Original Data

(Blank rows 1ndicate no data originally available)

82

84

895

NSN1

-
WOOWMOOoOOoOwrro

NSNZ

0

WhIOOLHLODODODDOD DO

oSSO0

<O

w o

NSN3

o .bn
OO D w DO

[x8)

90

1040
206
267
112

186
g

15

160

47

My
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NSN4

NSN5

[SNNW)

o0 ¢ )3 XN ]
DDOONINNDLLODWO

—

g Ut

NSN6

G
0
0

0
14

100
13




NSN1 NSN2 NSN3 NSN4 NSNS NSNé
DATE
JAN 86
FEB
MAR
APR :
MAY
JUN
JUL .
ALYG 3 1 9
SEP 55 141
OCT 6 6 146
NOV
DEC
JAN 87
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
JAN 88
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
CCT
NOV
DEC
JAN 89
FEB
MAR
APR

o
- W
W oo
w
=
oG D

w
~
8]

211

£
D
6]
(04]
rJ
=

—

tJ
(8]

AHOWDNDWN

(8]

Q0
O.
W AW

LR VY]
HL OO O N
(SN}
W o
—
=
o8
D)

OWMNCOOODOO,
\C
b=
Q
~
1J

CSCWU'o Wb
OO0 WO otyYO O N

o
~

FrY
~

18 139

[ aad
o
L
Oy

[N oN e
N~ W
OLHNVNWDN
[en]

D
(o]
U =
DO OOWIIWN B WSO

236
154
74
73
77
63
49
25

o
GOVONOA,IRHr—O
= [
= D~ MR WRAO W

{J

.—i
PO OROPDWOOOoOOr Wi

o b
— OO~ WWWA- OOt
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N3SN7 NSN8 NSNS NSN10 NSN11 NSN12
DATE
JAN 82
FEB 0 0 0 0
MAR 24 111 30 45 1
APR 10 76 8 7
MAY 0 o 0 0
JUN 3
JUL 1 :
AUG 5 220 34 g1
SEP 28 214 24 207
OCT 71 3010 29 310
NOV 20 355 33 159
DEC 0
JAN 10 515 59 70
FEB 83 27 243 135 311
MAR 106 7 41
MAY 12 59 0
JUN 11 9
JUL
AUG
OCT
NOV
DEC
JAN 84
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
JAN 85
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
JAN 86
FEB
MAR
APR

o OO
-
W o

aT ;o

(]

N
-

oo

wie Mw)

—
(RN R ae ol W1

o
L]
(]
rJ (8)]
S @O gD
bt =
Wy b O o
STINO O G

[
[
[Svie

18
28 19 158
1008 30 127

—
LA OO O
o
Q)

—
OO Oo
=
O
OO

249 18 138

p—
[]]
[
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DATE
MAY
JUN
JUL
AUG
SEP
OCT
NOV
nOEC

pEy WA

JAN
FEB
MAR
APR
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JUN
JUL
AUG
SEP
OCT
NOV
DEC
JAN
FEB
MAR
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SEP
OCT
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DEC
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FEB
MAR
APR

87
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NSN7

0
30

i

[y
[09]

[l o
= 2 s O D)W
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—
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Attachment 4: Exponential Smoothing Data
(Underline marks values created using Delphi technique)

NSN1 NSN2 NSN3 NSN4 NSNS NS
DATE
AUG 86 3 1 9 9 1 0
SEP 55 1 141 30 31 0
HOT 6 f 146 13 31 %
NoVv i8 3 i24 22 == 2
DEC 23 3 140 23 19 12
JAN 87 39 3 153 36 28 13
FEB 37 3 211 asq 58 o1
MAR i8 & 22 22 26 10
APR 17 5 42 22 21 4
MAY 1 0 80 3 2 0
JUN 0 0 4 0 1 0
JUL 0 0 3 2 3 3
AUG 5 0 98 5 5 0
SEP 2 0 9 3 3 G
OCT 32 2 325 19 16 93
NOV 11 3 533 4 107 20
DEC 4 0 0 16 7 a
JAN 88 24 2 64 16 39 L
FEB a7 2 32 18 139 g
MAR 6 3 38 12 4 9
APR 0 1 13 12 0 0
MAY 0 0 22 6 4 0
JUN 0 0 4 0 1 0
JUL 0 0 0 1 ! 3
AUG 1 0 40 5 3 14
SEP 6 3 236 13 10 57
OCT 27 9 154 13 6 9
NOV 4 0 74 1 13 2
DEC 8 1 73 8 6 29
JAN 89 7 0 77 5 5 2
FEB 10 1 63 6 1 2
MAR a 0 49 1 0 0
APR 5 1 25 1 1 Q
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NSN7 NSN& NSN9 NSN10 NSN11 NSN12Z

DATE

AUG A6 0 12 0 9 2 6
SEP 40 342 oz 107 18 66
NCT 14 255 15 80 12 50
NOV 14 182 11 53 10 58
DEC 18 115 16 31 9 f0
JAN 87 = 313 a7 105 20 63
FEP 13 e 12 129 37 75
MAR 8 154 15 76 19 52
AER 3 49 14 61 2 9
MAY 2 9 18 6 2 4
JUN 1 14 2 9 1 0
JUL 0 91 6 6 1 2
AUG 5 216 3 80 1 11
SEP 2 23 10 7 5 3
CeT 11 158 9 69 30 44
NOV 11 590 1 206 4 2z
DEC 1 86 23 78 0 a
JAN 88 30 180 22 335 is 29
FEB 95 27 2 18 0 68
MAR 3 153 4 62 5 24
APR 2 2 0 2 0 3
MAY 4 53 4 4 29 4
JUN 2 2 1 4 0 1
JUL 0 2 L 5 0 1
AUG 2 42 2 29 0 0
SEP 15 385 56 100 27 4z
OCT 5 412 72 277 30 £5
NOY 4 2 4 2 14 25
DEC 3 502 13 17 6 i1
JAN 89 2 873 2 81 11 23
FEB 1 161 12 33 4 13
MAR 0 54 2 2 4 31
APR 1 47 3 17 5 12
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Attachment

5:

Box-Jenkins Data

(Underline marks values created using Delphi technique)

NSN1 NSN2
DATE
JAN 82
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT 1
NOV 104
DEC 0
JAN 83 101
FEB 120
MAR 15
APR
MAY
JUN
JUL
AUG
SEP
oCT
NOV
DEC
JAN 87
FEB
MAR
APR
MAY
JUN
JuUL
AUG
SEP
OCT
NOV
DEC
JAN 88
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
Nov
DEC

rJ
(8]

[§8] Ol

WO DODO w

WLOO0OO0Om O o000

e
=

)
AEDPRPINOAOC O~ N

'N

oY

DA JEROO0OD O

[\
P OOCWOOOORWNINOWIVODDODCDRODIWWOOOIODCODOI-WHAOODDLOOIODO O DT DIW

NSN3

85

~g
[l 3

|

— -
N o))
WO NO O

Q]
O
o —

a).b"
O D w b O

O

236
154
74
73

123

NEN4

14

o

20
32

| @
NN WODO WU LD

[~ se}

w o

lm)gl =
LT WHBIODNED DO

3]
oW

—
SO w o

r—lb—-‘-r—'
[0 9] [o, )

= b

-
D~ WWNr=Otots

N3SN5

[\N)
[$)]

to 09

o} O N
O DOON NINLODWD

(SN

UHW = — D) = (o
(o9} [e VRN W Ol b U

6.

[¥8]

[
sl =)
W NN WO = D)

w

Sy
w
DLW O W =D DN O

—

-

NSNé

1

0

0
n
0

-
t

Q
)
14
100
13
0

WA W= ol oS00

VAH

jr=tu
b=

o

]

o]
w o O

B

N -
I ONL WOOCODYWRM— DO

[




NSN1 NSN2 NSN3 NSN4 NSNS NSNé6
DATE
JAN 89 7 0 77 5 5 0
FEB 10 1 63 6 1 2
MAR 9 0 49 1 0 0
AFR ] 1 29 1 1 0

MENT NaNR NENa NEN1O N5SN1i1 NZENLZ
JAN 8z 1l 208 3l 73 15 i
FEB 1) Q 0 0 0 Q
MAR 24 11 30 45 10 13
AFR 10 76 B 7 2 2
MAY 0 0 0 8] 0 0
JUN 3 o) . 7 10 6 6
JUL 1 8 31 0 0 0
AUG 5 220 34 81 5 10
SEP 28 215 24 207 1 i
CT 71 3010 29 310 7 23
NOV 20 355 53 159 54 108
DEC 0 0 0 0 0 N
JAN 83 10 515 59 70 28 20
FEB 27 243 105 311 1 136
MAR 13 140 45 64 9 32
APR 6 106 7 41 1 Q
MAY 1 12 59 0 0 0
JUN 9 11 9 1 0 0
JUL 0 9 2 18 0 0
AUG 4 38 10 64 1 3
SEP 11 28 9 158 0 0
OCT 15 1008 30 127 14 168
NOV 2 6 0 2 0 0
DEC 14 249 18 138 1 51
JAN 87 18 313 27 105 20 63
FEB 18 357 12 129 37 79
MAR 8 154 15 76 19 52
APR 3 49 14 61 2 9
MAY 2 9 18 5 2 4
JUN 1 14 2 9 1 C
JUL 0 91 6 6 1 2
AUG 5 216 3 a0 1 11
SEP 2 23 10 7 5 3
OCT 11 158 9 69 30 14
NOV 11 590 1 206 4 Z2
DEC 1 86 23 78 0 0
JAN 88 30 163 22 55 18 19
FEB 95 27 2 18 ) 6R
MAR 3 153 4 62 S 2
APR 2 22 0 2 0 3
MAY 4 59 4 4 28 4
JUN 2 2 1 4 0 1
JUL 0 2 1 5 ) 1
AUG 2 32 2 2 0 0
SEP 15 385 56 100 27 42
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NSN7 NSN8 NSN9 NSN10 NSN11 NSN12

DATE

oCT 5 412 72 277 30 65
NOV 4 2 4 2 14 25
DEC 3 502 13 17 6 11
JAN 89 2 873 52 81 6 23
FEB 1 161 12 33 4 i8
MAR 0 54 2 28 4 31
APR 1 47 3 17 3 13
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Box-Jenkins Forecast
Demand Data Plots

Attachment 6:
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Autocorrelation Function Plots

Attachment 7:
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Attachment 8: ARIMA Models Computer Output

THE ESTINATED RESIOVALS -- MODEL |
CUWULATIVE PERIODOGRAN .1 PROBABILITY LINITS
050 .180 150 .00 150 300 350 400 450

1.000 ¢+ + [ + + + + 4 HIENITtEITIErRTEENTINeTEY
E0 " ...'
.900 ¢ .
.800 ¢
700 ¢+
.600 ¢+

500 ¢+

400 +

000 HHOR0H0 1408008000+ 000000000+000000000+000900000+000000000+ 0000060000+ 000000000+ 000000000+

Figure 44, Cumulative Pericdogram for NSN 1
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THE ESTINATED RESIDUALS --  MODEL !¢
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Figure 45. Estimated Residuals Histogram for NSN 1
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Figure 63, Log Spectrum for NSN 10
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THE ESTINATED RESIDUALS --  MODEL 1
CUNULATIVE PERIODOGRAM .1 PROBABILITY LIMITS
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Figure 64. Cumulative Periodogram for NSN 11
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THE ESTIMATED RESIOVALS -- RODEL 1
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Figure 65. Estimated Residuals Histogram for NSN 11
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THE ESTIMATED RESIDUALS --
GRAPH OF OBSERVED SERIES ACF

MODEL 1
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Figure 66, Residual ACF for NSN 11
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Figure 68, Cumulative Periodogram for NSN 12
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Figure 69. Estimated Residuals Histogram for NSN 12
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Figure 70. Residual ACF for NSN 12
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Figure 71. Log Spectrum for NSN 12
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Attachment 10: DBecember Forecasts
Jan Feb Mar Apr

NSN 1
Simple Exp. 12.2 12.2 12.2 12.2
Winters' Exp. 15.49 20.85 6.59 4.68
Briw-lenkins 14.25% 9.47 9.77 11.33
SBSS 12.07 12.107 12.07 L 07
Actials 7 10 9 5

NSN 2
Simple Exp. Z 2 2 2
Winters' Eup. 2.96 4.13 4.72 3.46
Box-Jenkins
3BSS 2.05 2.05 2.05 2 05
Actuals 0 1 0 1

NSN 3
Simple Exp. 89.35 89.35 89 .35 8% .3%
Winters' Exp. 82.1 86 .49 57 .66 36.30
Box-Jenkins 98.05% 104.38 1C4.38 104,238
SBSS 111.44 111.44 111.44 111.44
Actuals 77 63 49 29

NSN 4
Simple Exp. 6.89 6.89 ©.39 6.5
Winters' Exp. 5.87 6 3.21 2.7
Box-Jenrkins
5BSS 2.82 9.432 9.82 9 32
Acruals 5 6 1 !

NSN 5
Simple Exp. 18.8 18.8 18.8 18.8
Winters' Exp. 22.66 54.82 10.45 7.673
Bax~Jenkins 6.2 4.09 -0.52 1.52
SBSS 18.27 18.27 18.27 8.27
Actuals ) 1 0 1

NSN 6
Simple Exp. 12.43 12.43 12.473 12.43
Winters' Exp. 16.82 18.7 17.83 15.64
Box-Jenkins
SBS3 11.27 11.27 11.27 .27

0 2 0 0




NSN 7
Simple Exp.
Winters' Exp.
Box—-Jenkins
SB33

Simple Exp.
Winters' Exp.
Box~-Jdenkins
SBSS

Actuals

NSN 9
Simple Exp.
Winters' Exp.
Box—-Jenkins
SBSS

1

NSN 10
Simple Exp.
Winters' Exp.
Box-Jernkins
SBSS
Actuals

MSN 11
Simple Exp.
Winters' Exp.
Box~Jenkins
SBSS
Actuals

NSN 12
Simple Exp.
Winters' Exp.
Box-Jenkins
SB3S

Decemher Forecasts
Jan Feb Mar Apr
9.79 9.79 9.79 9.79
15.48 35.24 4.72 3.06
Q.67 9.67 9.67 a.ha7
2 1 0 1
177.3 177.3 1773 177
237 .58 202.12 183,18 107,78
131.49 131.49 131.49 131.49
873 161 54 7
13.52 13.52 13.52 13,52
20.97 2.65 10,38 2.8
35.87 22.07 19.9y 037
13.673 13.63 13.673 Pz an
52 12 2 =
54 .95 54 .95 54,05 544 95
58.81 54.11 54 .66 33,56
92.89% 99 .37 Q9 .37 D9 Y7
62.28 62,28 62.28 £2 2K
81 373 o8 17
9.68 9.68 9.68 9,683
13.7 13.18 Q.84 2.91
3.93 7.38 5.56 3.96
8.37 B.37 8,37 =37
6 4 4 S
13.98 13.98 3.98 13.98
28.12 40 .83 21.59 5. 231
41.38 35 18.25 15.49
19.69 19.69 19 .69 19 .09
23 18 31 13
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Attachment 10: January Forecasts

Feb Mar Apr

NSN 1
Simple Exp. 11.9 11.9 11.9
Winters' Exp 18.52 5.25 3.47
Box-Jenkine 6.07 £.973 .81
SB3S 1.7 11.7 11.7
Actuair i 9 5

NSN 2
Simple Eup. 1.84 1.84 1.84
Winters' Exp 2.94 3.3 2.24
Box-Jenkins
SBSS 1.92 1.82 1.92
Actuals 1 0 1

NSN 3
Simple Exp. 90.51 90.51 90.51
Winters' Exp. 89, 33 60.42 39.1
Box—-Jenkin 98.3 104 .38 104.38
SR5S 103,74 103 .74 108,74
Aztuals n2 49 25

NSN 4
Simple Exp. 5.6 5.6 2.6
Winters' Exp. 5.15 2.586 1.86
Box-Jenkinsns
SBSS .40 3.4" n.4n
Actuals O L 1

NSN 5§
Simple Exp. 18.16 13.16 18.16
Winters' Exp. 60.48 11.99 9.02
Box—-Jenkins 7.4 -0.89 0.39
SBSS 17.39 17.39 17.39
Actualg 1 0 1

NSN 6
Simple Exp. 10.66 10.66 10.66
Winters' Exp. S.43 S.37 3.74
Box-Jenkins
3BSS 10.54 10.54 10.54
Actuals 2 0 0
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NSN 7
Simple Exp.
Winters' Exp.

Bux—Jenking

b oY otttny
JL SN

Actuals
NON 8
1mpie E

—r
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v
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TN D3

> Ui Cd Ul
cCw| T

w
e

NEN 10
Zimple Exp.

Wintars' Exp.

Box—-Jenkins
SBSE

Actuals

NSN 11
Simple Exp.
Wintars'
Rox-Jenkins
SBSS
Actuals

NSN 12
Simple Exp.

Winters' Ewp.

Rovx-Jenkins
5BSS5
Actuals

Exp.

-January Forecasts

Feb Mar Apr
9.4 9.4 9.4
35.73 4.02 2.39

21 S ld 3. 14

i 0 1
233,87 233.687 233007
inn . 42 298 51 181.22
173.75 173.75 173.75

161 54 47
44 .49 44 .49 44 .49
19.9 21.66 19.83
13,35 17.47 27.4
15,77 15.77 15,77

12 2 3
STRINEYS 60.643 60.68
64,95 £3.57 45.91
25 .25 100.23 100. 273
62.92 62.98 62.98

33 =8 7
10.48 10.48 10.48
14.1 10.63 3.41
7.38 5.56 2.0z
£.47 B.47 8.47

4 4 5
21.62 21.62 21.62
41 .21 22.06 5.5
35 18 25 12.329
19.76 19.76 19.76

19 31 13




Attachment 11:

February Forecasts

Mar Apr
NSN 1
Simple Exp. 11.98 11.98
Winters' Exp. 6.2 4.27
Bex-Jdenkins 8.77 8.131
SBSS3 12,44 12.44
Actuals a 5
NSN 2
Simple Exp. 1.87 1.87
Winters' Exp. 2,98 2.09
Box-Jenkins
SBSS 2 2
Actuals 0 1
NSN 2
Simple Eup. 85,139 85 .39
Winters' Exp. 56.61 35.88
Box-Jenkins 94 .18 104 . 38
SBSS 113.82 113.82
Actuals 49 25
NSN 4
Simple EXp. 5.37 5.87
Winters' Exp. 2.79 212
Box—-Jenkins
SBSS 9.95 9,95
Actuals i 1
NSN 5
Simple Exp. 17.13 17.13
Winters' Exp. 11.01 7.67
Box~-Jenkins -4.55 -1.58
SBSS 17 .67 17 .67
Actuals b] 1
NSN 6
Simple Exp. 10.26 10.26
Winters' Exp. 6.69 4.9
Box~-Jenkins
3B353 10.79 10.79
Actuals 0 n

E R - R R
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February Forecasts

Mar Apr
NSN 7
Simple Exp. 8.99 8.99
Winters' Exp. 3.57 2.06

Bow-Jenkings

NSN 8
Simple Exp. =22.41 2270 .41
Wirters' Exp. 178.3 83.7
Rox—Jenkins
3B55 185.41 185 41
Actuals 54 47
N3N 9
Zimple Exp. 13.04 13.04
Winters' Exp. 10.05 /.22
Box—=Jenkins 11.1 28,44
3BS3 16,68 16 . A8
Actuals 2 3
NSN 10
Simple Exp. 56.38 56,38
Winters' Exp. 56 .41 37.03
Box-Jenkins 73.59 104.773
SBES 65 .71 £5.71
Actuals 25 17
NSN 11
Simple Exp. G, 75 a.25
Winters' Exp. 9.16 2.21
Box—Jenkins 5.56H 2.02
SB5S 8.82 2.82
Actuals 4 5
NSN 12
Simple Euxp. 13.55 IR.55
Winters Exp. 20.46 4,496
Bow -Jeonking 1& 25 P2oo3a
SBS5SS 2106 21.06
Actuals KB 13

Y77




Attacrhmeant 12: March Forecasts

Apr
NSN |
Simple Exp. 11.8
Winters' Exp. 4 .07
Box-Jenkins B.44

SBoS 12025
Actiials a

NSN 2
Simples T 1.732
Winters' Exp 1,144

NGN 3
Simple Zup 30.13
Winters' E:xp 32.75
RBox-J=nkins 91,373
=B35S 110.22
Actuals 25
NN 4
Simple Exp. 2.54
Winters® Exp. 1.2
Rox-Jenkins
SR3OS 9.4
Actuals !
NSN 5
mple Ewp 164
nters' Exp. 6.42
v-Jenkine 3

NEN 6
Simple Exn. G 64
Wintars' E:
Bov~Jenkins
5BSS 10.
Actuals N

3
w
iy
D




March Forecasts

Apr
NSN 7
Simple Exp. 8.57
Winters' Exp. 1.38
Box-Jenkins
SB5S B8.79
Actunls 1
NSN 8
Simple Evp. 208 .58
Winters' Exp. 71.3
Box-Jenkins
SEES 178 .11
Actuals 47
NSEN 9
Simple Exp. 5.23
Winters' Eup. 5.32
Box—-Jenkins 25.39
SBS5ES 15.86
Acztnals 3
NSN 10
Simple Exp. 24.33
Winters' Exp. 35.45
Box-Jenkins 87.14
SBSC 63.62
Actuals 17
NEM 11
Jimple Exp. 9.09
Winters' Exp. 2.18
Box~-Jenkins 2.02
SBSS 8. .55
Actuals S
NSN 12
Simple Exp. 29.11
Winters' Exp. 5.6
Box-Jenkins 12.39
SB3SS 21 .62
Actuals 13
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Forecast Graphs
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